scholarly journals Moment-to-Moment Continuous Attention Fluctuation Monitoring through Consumer-Grade EEG Device

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3419
Author(s):  
Shan Zhang ◽  
Zihan Yan ◽  
Shardul Sapkota ◽  
Shengdong Zhao ◽  
Wei Tsang Ooi

While numerous studies have explored using various sensing techniques to measure attention states, moment-to-moment attention fluctuation measurement is unavailable. To bridge this gap, we applied a novel paradigm in psychology, the gradual-onset continuous performance task (gradCPT), to collect the ground truth of attention states. GradCPT allows for the precise labeling of attention fluctuation on an 800 ms time scale. We then developed a new technique for measuring continuous attention fluctuation, based on a machine learning approach that uses the spectral properties of EEG signals as the main features. We demonstrated that, even using a consumer grade EEG device, the detection accuracy of moment-to-moment attention fluctuations was 73.49%. Next, we empirically validated our technique in a video learning scenario and found that our technique match with the classification obtained through thought probes, with an average F1 score of 0.77. Our results suggest the effectiveness of using gradCPT as a ground truth labeling method and the feasibility of using consumer-grade EEG devices for continuous attention fluctuation detection.

2019 ◽  
Vol 8 (3) ◽  
pp. 6180-6185

Epilepsy identification is done by visual observation of electroencephalography (EEG) signals, which is more sensitive to bias and time consuming. In most of the previous research of epileptic seizure detection suffers from unsuitability and low power for processing large datasets. To eliminate aforementioned problems a computerized detection method is required to aid medical professionals. In this paper, a new technique is proposed to identify the epilepsy based on VMD, RELIEFF algorithm and machine learning approach. To investigate the proposed method performance a public EEG dataset is adopted from university hospital bonn, Germany. The technique starts with the VMD, which is used to extract the features from each EEG signal. And then RELIEFF algorithm is adopted to identify the best features. Finally to categorize the normal and epilepsy EEG signals a machine learning classification (ANN, KNN, and SVM) approach is used. The results demonstrate that the adopted method (VMD+RELIEFF+SVM) can achieve a better accuracy, shows that a commanding method to identification and classification of epileptic seizures


2015 ◽  
Vol 15 (05) ◽  
pp. 1550085 ◽  
Author(s):  
MADHURI TASGAONKAR ◽  
MADHURI KHAMBETE

Diabetes affects retinal structure of a diabetic patient by generating various lesions. Early detection of these lesions can avoid the loss of vision. Automation of detection process can be made easily feasible to masses by the use of fundus imaging. Detection of exudates is significant in diabetic retinopathy (DR) as they are earlier signs and can cause blindness. Finding the exact location as well as correct number of exudates play vital role in the overall treatment of a patient. This paper presents an algorithm for automatic detection of exudates for DR. The algorithm combines the advantages of supervised and unsupervised techniques. It uses fuzzy-C means (FCM) segmentation on coarse level and mahalanobis metric for finer classification of segmented pixels. Mahalanobis criterion gives significance to most relevant features and thus proves a better classifier. The results are validated using DIARETDB0 and DIARETDB1 databases and the ground truth provided with it. This evaluation provided 95.77% detection accuracy.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3415 ◽  
Author(s):  
Jinpeng Zhang ◽  
Jinming Zhang ◽  
Shan Yu

In the image object detection task, a huge number of candidate boxes are generated to match with a relatively very small amount of ground-truth boxes, and through this method the learning samples can be created. But in fact the vast majority of the candidate boxes do not contain valid object instances and should be recognized and rejected during the training and evaluation of the network. This leads to extra high computation burden and a serious imbalance problem between object and none-object samples, thereby impeding the algorithm’s performance. Here we propose a new heuristic sampling method to generate candidate boxes for two-stage detection algorithms. It is generally applicable to the current two-stage detection algorithms to improve their detection performance. Experiments on COCO dataset showed that, relative to the baseline model, this new method could significantly increase the detection accuracy and efficiency.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5000 ◽  
Author(s):  
Zhuangzhuang Zhou ◽  
Qinghua Lu ◽  
Zhifeng Wang ◽  
Haojie Huang

The detection of defects on irregular surfaces with specular reflection characteristics is an important part of the production process of sanitary equipment. Currently, defect detection algorithms for most irregular surfaces rely on the handcrafted extraction of shallow features, and the ability to recognize these defects is limited. To improve the detection accuracy of micro-defects on irregular surfaces in an industrial environment, we propose an improved Faster R-CNN model. Considering the variety of defect shapes and sizes, we selected the K-Means algorithm to generate the aspect ratio of the anchor box according to the size of the ground truth, and the feature matrices are fused with different receptive fields to improve the detection performance of the model. The experimental results show that the recognition accuracy of the improved model is 94.6% on a collected ceramic dataset. Compared with SVM (Support Vector Machine) and other deep learning-based models, the proposed model has better detection performance and robustness to illumination, which proves the practicability and effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4474 ◽  
Author(s):  
Tal Reches ◽  
Moria Dagan ◽  
Talia Herman ◽  
Eran Gazit ◽  
Natalia A. Gouskova ◽  
...  

Freezing of gait (FOG) is a debilitating motor phenomenon that is common among individuals with advanced Parkinson’s disease. Objective and sensitive measures are needed to better quantify FOG. The present work addresses this need by leveraging wearable devices and machine-learning methods to develop and evaluate automated detection of FOG and quantification of its severity. Seventy-one subjects with FOG completed a FOG-provoking test while wearing three wearable sensors (lower back and each ankle). Subjects were videotaped before (OFF state) and after (ON state) they took their antiparkinsonian medications. Annotations of the videos provided the “ground-truth” for FOG detection. A leave-one-patient-out validation process with a training set of 57 subjects resulted in 84.1% sensitivity, 83.4% specificity, and 85.0% accuracy for FOG detection. Similar results were seen in an independent test set (data from 14 other subjects). Two derived outcomes, percent time frozen and number of FOG episodes, were associated with self-report of FOG. Bother derived-metrics were higher in the OFF state than in the ON state and in the most challenging level of the FOG-provoking test, compared to the least challenging level. These results suggest that this automated machine-learning approach can objectively assess FOG and that its outcomes are responsive to therapeutic interventions.


2019 ◽  
Vol 4 (26) ◽  
pp. eaav1488 ◽  
Author(s):  
Thomas George Thuruthel ◽  
Benjamin Shih ◽  
Cecilia Laschi ◽  
Michael Thomas Tolley

Recent work has begun to explore the design of biologically inspired soft robots composed of soft, stretchable materials for applications including the handling of delicate materials and safe interaction with humans. However, the solid-state sensors traditionally used in robotics are unable to capture the high-dimensional deformations of soft systems. Embedded soft resistive sensors have the potential to address this challenge. However, both the soft sensors—and the encasing dynamical system—often exhibit nonlinear time-variant behavior, which makes them difficult to model. In addition, the problems of sensor design, placement, and fabrication require a great deal of human input and previous knowledge. Drawing inspiration from the human perceptive system, we created a synthetic analog. Our synthetic system builds models using a redundant and unstructured sensor topology embedded in a soft actuator, a vision-based motion capture system for ground truth, and a general machine learning approach. This allows us to model an unknown soft actuated system. We demonstrate that the proposed approach is able to model the kinematics of a soft continuum actuator in real time while being robust to sensor nonlinearities and drift. In addition, we show how the same system can estimate the applied forces while interacting with external objects. The role of action in perception is also presented. This approach enables the development of force and deformation models for soft robotic systems, which can be useful for a variety of applications, including human-robot interaction, soft orthotics, and wearable robotics.


Sign in / Sign up

Export Citation Format

Share Document