scholarly journals Nonlinear Control Strategies for an Autonomous Wing-In-Ground-Effect Vehicle

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4193
Author(s):  
Davide Patria ◽  
Claudio Rossi ◽  
Ramon A. Suarez Fernandez ◽  
Sergio Dominguez

Autonomous vehicles are nowadays one of the most important technologies that will be incorporated to every day life in the next few years. One of the most promising kind of vehicles in terms of efficiency and sustainability are those known as Wing-in-Ground crafts, or WIG crafts, a family of vehicles that seize the proximity of ground to achieve a flight with low drag and high lift. However, this kind of crafts lacks of a sound theory of flight that can lead to robust control solutions that guarantees safe autonomous operation in all the cruising phases.In this paper we address the problem of controlling a WIG craft in different scenarios and using different control strategies in order to compare their performance. The tested scenarios include obstacle avoidance by fly over and recovering from a random disturbance in vehicle attitude. MPC (Model Predictive Control) is tested on the complete nonlinear model, while PID, used as baseline controller, LQR (Linear Quadratic Regulator) and adaptive LQR are tested on top of a partial feedback linearization. Results show that LQR has got the best overall performance, although it is seen that different design specifications could lead to the selection of one controller or another.

Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Rupal Roy ◽  
Maidul Islam ◽  
Nafiz Sadman ◽  
M. A. Parvez Mahmud ◽  
Kishor Datta Gupta ◽  
...  

The quadrotor is an ideal platform for testing control strategies because of its non-linearity and under-actuated configuration, allowing researchers to evaluate and verify control strategies. Several control strategies are used, including Proportional-Integral-Derivative (PID), Linear Quadratic Regulator (LQR), Backstepping, Feedback Linearization Control (FLC), Sliding Mode Control (SMC), and Model Predictive Control (MPC), Neural Network, H-infinity, Fuzzy Logic, and Adaptive Control. However, due to several drawbacks, such as high computation, a large amount of training data, approximation error, and the existence of uncertainty, the commercialization of those control technologies in various industrial applications is currently limited. This paper conducts a thorough analysis of the current literature on the effects of multiple controllers on quadrotors, focusing on two separate approaches: (i) controller hybridization and (ii) controller development. Besides, the limitations of the previous works are discussed, challenges and opportunities to work in this field are assessed, and potential research directions are suggested.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Oscar Andrew Zongo ◽  
Anant Oonsivilai

This paper presents a comparison between a proportional-integral controller, low pass filters, and the linear quadratic regulator in dealing with the task of eliminating harmonic currents in the grid-connected photovoltaic system. A brief review of the existing methods applied to mitigate harmonic currents is presented. The Perturb & Observe technique was employed for maximum power point tracking. The PI control, low pass filters, and the linear quadratic regulator are discussed in detail in terms of their control strategies. The grid current was analyzed in the system with all three of the controllers applied to control the voltage source inverter of the solar photovoltaic system connected to the grid through an L filter and LCL filter and simulated in MATLAB/SIMULINK. The simulation results obtained have proven the robustness of the linear quadratic regulator over other methods. The technique lowers the grid current total harmonic distortion from 7.85% to 2.13%.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ivan Cvok ◽  
Mario Hrgetić ◽  
Matija Hoić ◽  
Joško Deur ◽  
Davor Hrovat ◽  
...  

Abstract Autonomous vehicles (AVs) give the driver opportunity to engage in productive or pleasure-related activities, which will increase AV’s utility and value. It is anticipated that many AVs will be equipped with active suspension extended with road disturbance preview capability to provide the necessary superior ride comfort resulting in almost steady work or play platform. This article deals with assessing the benefits of introducing various active suspensions and related linear quadratic regulator (LQR) controls in terms of improving the work/leisure ability. The study relies on high-performance shaker rig-based tests of a group of 44 drivers involved in reading/writing, drawing, and subjective ride comfort rating tasks. The test results indicate that there is a threshold of root-mean-square vertical acceleration, below which the task execution performance is similar to that corresponding to standstill conditions. For the given, relatively harsh road disturbance profile, only the fully active suspension with road preview control can suppress the vertical acceleration below the above critical superior comfort threshold. However, when adding an active seat suspension, the range of chassis suspension types for superior ride comfort is substantially extended and can include semi-active suspension and even passive suspension in some extreme cases that can, however, lead to excessive relative motion between the seat and the vehicle floor. The design requirements gained through simulation analysis, and extended with cost and packaging requirements related to passenger car applications, have guided design of two active seat suspension concepts applicable to the shaker rig and production vehicles.


2019 ◽  
Vol 9 (7) ◽  
pp. 1376
Author(s):  
Peng Zhang ◽  
Yunhua Li

The objective of this paper is to design a pump that can match its delivery pressure to the aircraft load. Axial piston pumps used in airborne hydraulic systems are required to work in a constant pressure mode setting based on the highest pressure required by the aircraft load. However, the time using the highest pressure working mode is very short, which leads to a lot of overflow lose. This study is motivated by this fact. Pressure continuous regulation electrohydraulic proportional axial piston pump is realized by combining a dual-pressure piston pump with electro-hydraulic proportional technology, realizing the match between the delivery pressure of the pump and the aircraft load. The mathematical model is established and its dynamic characteristics are analyzed. The control methods such as a proportional integral derivative (PID) control method, linear quadratic regulator (LQR) based on a feedback linearization method and a backstepping sliding control method are designed for this nonlinear system. It can be seen from the result of simulation experiments that the requirements of pressure control with a pump are reached and the capacity of resisting disturbance of the system is strong.


2014 ◽  
Vol 663 ◽  
pp. 146-151 ◽  
Author(s):  
Noraishikin Zulkarnain ◽  
Hairi Zamzuri ◽  
Saiful Amri Mazlan

The objective of this paper is to design a linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controllers for an active anti-roll bar system. The use of an active anti-roll bar will be analysed from two different perspectives in vehicle ride comfort and handling performances. This paper proposed the basic vehicle dynamic modelling with four degree of freedom (DOF) on half car model and are described that show, why and how it is possible to control the handling and ride comfort of the car, with the external forces also control strategies on the front anti-roll bar. By simulation analysis, the design model is validity and the performance under control of linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controller are achieved. Both two controllers are modeled in MATLAB/SIMULINK environment. It has to be determined which control strategy delivers better performance with respect to roll angle and the roll rate of half vehicle body. The result shows, however, that LQG produced better response compared to a LQR strategy.


Author(s):  
Huyao Wu ◽  
Bin Ran

Abstract In this paper, the control strategies for Path Following System (PFS) in autonomous vehicle, which lets vehicle stay in the center of its lane is discussed, we will create a plant mechanical, mathematical and error dynamics model for the study of PFS, which is stabilized by the state-feedback control law, also considers the output where the sensor is made. We apply mainly an optimal control or configure a Linear-quadratic Regulator (LQR) for state space systems and compare it to that based on the Pole Assignment (PA). Combined with a typical operating scenario of the road, we mainly consider static and dynamic errors in the moving process, and how intensely the error fluctuates and how errors are related to the next time. Figures and data show that the LQR controller successfully adjusts and gives appropriate input to let the vehicle approach to centerline, errors and the steering angle required to negotiate a curved road are presented and analyzed, finally relevant conclusions are drawn.


Author(s):  
Krishna Rangavajhula ◽  
H.-S. Jacob Tsao

A key source of safety and infrastructure issues for operations of longer combination vehicles (LCVs) is off-tracking, which has been used to refer to the general phenomenon that the rear wheels of a truck do not follow the track of the front wheels and wander off the travel lane. In this paper, we examine the effectiveness of command-steering in reducing off-tracking during a 90-degree turn at low and high speeds in an articulated system with a tractor and three full trailers. In command steering, rear front axles of the trailers are steered proportionately to the articulation angle between the tractor and trailing units. We then consider several control strategies to minimize off-tracking and rearward amplification of this system. A minimum rearward amplification ratio (RWA), as a surrogate for minimum off tracking, has been used as the control criterion for medium to high speeds to arrive at an optimal Linear Quadratic Regulator (LQR) controller. As for low speeds, the maximum radial offset between the tractor and trailer 3 is minimized in the design of the controller. Robustness of the optimal controller with respect to tyre-parameter perturbations is then examined. Based on the simulation results, we find that, active command steering is very effective in reducing off tracking at low- as well as high-speed 90-degree turns. To achieve acceptable levels of RWA and off tracking, at least two of the three trailers must be actively command-steered. Among the three two-trailer-steering possibilities, actively steering trailers 1 and 2 is most cost-effective and results in the lowest RWA for medium- to high- speeds (at which RWA is important), and off-tracking is practically eliminated for all speed regimes considered.


2010 ◽  
Vol 10 (03) ◽  
pp. 501-527 ◽  
Author(s):  
ARASH MOHTAT ◽  
AGHIL YOUSEFI-KOMA ◽  
EHSAN DEHGHAN-NIRI

This paper demonstrates the trade-off between nominal performance and robustness in intelligent and conventional structural vibration control schemes; and, proposes a systematic treatment of stability robustness and performance robustness against uncertainty due to structural damage. The adopted control strategies include an intelligent genetic fuzzy logic controller (GFLC) and reduced-order observer-based (ROOB) controllers based on pole-placement and linear quadratic regulator (LQR) conventional schemes. These control strategies are applied to a seismically excited truss bridge structure through an active tuned mass damper (ATMD). Response of the bridge-ATMD control system to earthquake excitation records under nominal and uncertain conditions is analyzed via simulation tests. Based on these results, advantages of exploiting heuristic intelligence in seismic vibration control, as well as some complexities arising in realistic conventional control are highlighted. It has been shown that the coupled effect of spill-over (due to reduction and observation) and mismatch between the mathematical model and the actual plant (due to uncertainty and modeling errors) can destabilize the conventional closed-loop system even if each is alone tolerated. Accordingly, the GFLC proves itself to be the dominant design in terms of the compromise between performance and robustness.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Z. Q. Gu ◽  
S. O. Oyadiji

In recent years, considerable attention has been paid to the development of theories and applications associated with structural vibration control. Integrating the nonlinear mapping ability with the dynamic evolution capability, diagonal recurrent neural network (DRNN) meets the needs of the demanding control requirements in increasingly complex dynamic systems because of its simple and recurrent architecture. This paper presents numerical studies of multiple degree-of-freedom (MDOF) structural vibration control based on the approach of the backpropagation algorithm to the DRNN control method. The controller’s stability and convergence and comparisons of the DRNN method with conventional control strategies are also examined. The numerical simulations show that the structural vibration responses of linear and nonlinear MDOF structures are reduced by between 78% and 86%, and between 52% and 80%, respectively, when they are subjected to El Centro, Kobe, Hachinohe, and Northridge earthquake processes. The numerical simulation shows that the DRNN method outperforms conventional control strategies, which include linear quadratic regulator (LQR), linear quadratic Gaussian (LQG) (based on the acceleration feedback), and pole placement by between 20% and 30% in the case of linear MDOF structures. For nonlinear MDOF structures, in which the conventional controllers are ineffective, the DRNN controller is still effective. However, the level of reduction of the structural vibration response of nonlinear MDOF structures achievable is reduced by about 20% in comparison to the reductions achievable with linear MDOF structures.


Sign in / Sign up

Export Citation Format

Share Document