scholarly journals Signal Expansion Method in Indoor FMCW Radar Systems for Improving Range Resolution

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4226
Author(s):  
Seongmin Baek ◽  
Yunho Jung ◽  
Seongjoo Lee

As various unmanned autonomous driving technologies such as autonomous vehicles and autonomous driving drones are being developed, research on FMCW radar, a sensor related to these technologies, is actively being conducted. The range resolution, which is a parameter for accurately detecting an object in the FMCW radar system, depends on the modulation bandwidth. Expensive radars have a large modulation bandwidth, use the band above 77 GHz, and are mainly used as in-vehicle radar sensors. However, these high-performance radars have the disadvantage of being expensive and burdensome for use in areas that require precise sensors, such as indoor environment motion detection and autonomous drones. In this paper, the range resolution is improved beyond the limited modulation bandwidth by extending the beat frequency signal in the time domain through the proposed Adaptive Mirror Padding and Phase Correction Padding. The proposed algorithm has similar performance in the existing Zero Padding, Mirror Padding, and Range RMSE, but improved results were confirmed through the ρs indicating the size of the side lobe compared to the main lobe and the accurate detection rate of the OS CFAR. In the case of ρs, it was confirmed that with single targets, Adaptive Mirror Padding was improved by about 3 times and Phase Correct Padding was improved by about 6 times compared to the existing algorithm. The results of the OS CFAR were divided into single targets and multiple targets to confirm the performance. In single targets, Adaptive Mirror Padding improved by about 10% and Phase Correct Padding by about 20% compared to the existing algorithm. In multiple targets, Phase Correct Padding improved by about 20% compared to the existing algorithm. The proposed algorithm was verified through the MATLAB Tool and the actual FMCW radar. As the results were similar in the two experimental environments, it was verified that the algorithm works in real radar as well.

2017 ◽  
Vol 9 (6) ◽  
pp. 1219-1230 ◽  
Author(s):  
Muhammad Furqan ◽  
Faisal Ahmed ◽  
Reinhard Feger ◽  
Klaus Aufinger ◽  
Walter Hartner ◽  
...  

High-performance SiGe HBTs and advancements in packaging processes have enabled system-in-package (SiP) designs for millimeter-wave applications. This paper presents a 122-GHz bistatic frequency modulated continuous wave (FMCW) radar SiP. The intended applications for the SiP are short-range distance and angular position measurements as well as communication links between cooperative radar stations. The chip is realized in a 130-nm SiGe BiCMOS technology and is based on a fully differential frequency-multiplier chain with in phase quadrature phase receiver and a binary phase shift keying modulator in the transmit chain. On-wafer measurement results show a maximum transmit output power of 2.7 dBm and a receiver gain of 11 dB. The chip consumes a DC power of 570 mW at a supply voltage of 3.3 V. The fabricated chip is integrated in an embedded wafer level ball grid array (eWLB) package. Transmit/receive rhombic antenna arrays with eight elements are designed in two eWLB packages with and without backside metal, with a measured peak gain of 11 dBi. The transceiver chip size is 1.8 mm × 2 mm, while the package size is 12 mm × 6 mm, respectively. FMCW measurements have been conducted with a sweep bandwidth of up to 17 GHz and a measured range resolution of 1.5 cm has been demonstrated. 2D positions of multiple targets have been computed using two coherently linked radar stations.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6676
Author(s):  
Chankyu Kim ◽  
Yunho Jung ◽  
Seongjoo Lee

As the autonomous driving technology develops, research on related sensors is also being actively conducted. One system that is widely used today uses a light source with a wavelength in the 905 nm band for the pulse Light Detection And Ranging (LiDAR) system. This has the disadvantages of being harmful to the human eye and in making digital signal processing difficult at high sampling rates. The Frequency Modulated Continuous Wave (FMCW) LiDAR system has been proposed as an alternative. However, the FMCW LiDAR is formed with a high beat frequency by a method different from that of the FMCW Radar, which causes a hardware burden on the FFT (Fast Fourier Transform) module for interpreting the beat frequency information. In this paper, the FFT module that may occur in the FMCW LiDAR using Digital Down Convert (DDC) technology is extracted at 256 points, which is 25 times smaller than the existing 8192 points, and the beat frequency is 0 to 50 m at 3 cm intervals. As a result of generating and restoring the distance, the performance of 0.03 m Root Mean Square Error (RMSE) compared to the conventional one was confirmed. In this process, the hardware module was directly mounted and verified on the FPGA. In the case of the Simple Threshold-Constant False Alarm Rate (ST-CFAR) provided, the RMSE was measured by generating beat frequencies from 0 to 50 m at 1 cm intervals, and as a result, the result of 0.019 m was confirmed at 0.03 m in the past.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 943 ◽  
Author(s):  
Il Bae ◽  
Jaeyoung Moon ◽  
Jeongseok Seo

The convergence of mechanical, electrical, and advanced ICT technologies, driven by artificial intelligence and 5G vehicle-to-everything (5G-V2X) connectivity, will help to develop high-performance autonomous driving vehicles and services that are usable and convenient for self-driving passengers. Despite widespread research on self-driving, user acceptance remains an essential part of successful market penetration; this forms the motivation behind studies on human factors associated with autonomous shuttle services. We address this by providing a comfortable driving experience while not compromising safety. We focus on the accelerations and jerks of vehicles to reduce the risk of motion sickness and to improve the driving experience for passengers. Furthermore, this study proposes a time-optimal velocity planning method for guaranteeing comfort criteria when an explicit reference path is given. The overall controller and planning method were verified using real-time, software-in-the-loop (SIL) environments for a real-time vehicle dynamics simulation; the performance was then compared with a typical planning approach. The proposed optimized planning shows a relatively better performance and enables a comfortable passenger experience in a self-driving shuttle bus according to the recommended criteria.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Sayed Muhammod Baker ◽  
Rinku Basak

In this work, the effects on the performance characteristics of a In0.1558Ga0.8442N / Al0.0416Ga0.9584N 3QW separate confinement heterostrcture 450 nm true blue edgeemitting laser are presented by considering different injection current. At the temperature of 300 K, the threshold current of the laser is 11 mA. The peak material gain for the designed laser is obtained as 1106 cm-1 and further used for the analysis of the performance characteristics of the designed doubleheterostructure laser for the variation of injection current. The injection current can be applied to the device is at around 12 to 15 times of the threshold current. At the value of injection current 152 mA, the maximum output power of the laser is 256.4 mW, the maximum resonance frequency is 14.5 GHz and the corresponding modulation bandwidth is 25.3 GHz at the temperature of 300 K.


Author(s):  
Gebrehiwet Gebrekrstos Lema

<p>For high performance communication systems, Side Lobe Level (SLL) reduction and improved directivity are the goal of antenna designers. In the recent years, many optimization techniques of antenna design are occupying demanding place over the analytical techniques. Though they have contributed attractive solutions, it is often obvious to select one that meets the particular design need at hand. In this paper, an optimization technique called Self-adaptive Differential Evolution (SaDE) that can be able to learn and behave intelligently along with hyper beam forming is integrated to determine an optimal set of excitation weights in the design of EcAA. Non-uniform excitation weights of the individual array elements of EcAA are performed to obtain reduced SLL, high directivity and flexible radiation pattern. To evaluate the improved performance of the proposed SaDE optimized hyper beam, comparison are done with uniformly excited, SaDE without hyper beam and Genetic Algorithm (GA). In general, the proposed work of pattern synthesis has resulted in much better reduction of SLL and FNBW than both the uniformly excited and thinned EcAA. The results of this study clearly reveal that the SLL highly reduced at a very directive beamwidth.</p>


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1679 ◽  
Author(s):  
Ronghui Zhan ◽  
Liping Wang ◽  
Jun Zhang

This paper deals with joint tracking and classification (JTC) of multiple targets based on scattering center model (SCM) and wideband radar observations. We first introduce an SCM-based JTC method, where the SCM is used to generate the predicted high range resolution profile (HRRP) with the information of the target aspect angle, and target classification is implemented through the data correlation of observed HRRP with predicted HRRPs. To solve the problem of multi-target JTC in the presence of clutter and detection uncertainty, we then integrate the SCM-based JTC method into the CBMeMBer filter framework, and derive a novel SCM-JTC-CBMeMBer filter with Bayesian theory. To further tackle the complex integrals’ calculation involved in targets state and class estimation, we finally provide the sequential Monte Carlo (SMC) implementation of the proposed SCM-JTC-CBMeMBer filter. The effectiveness of the presented multi-target JTC method is validated by simulation results under the application scenario of maritime ship surveillance.


2020 ◽  
Vol 4 (8) ◽  
pp. 1-4
Author(s):  
Maxime Schutz ◽  
Cyril Decroze ◽  
Michele Lalande ◽  
Bertrand Lenoir

Author(s):  
Bo Li ◽  
Ziyi Peng ◽  
Peng Hou ◽  
Min He ◽  
Marco Anisetti ◽  
...  

AbstractIn the Internet of Vehicles (IoV), with the increasing demand for intelligent technologies such as driverless driving, more and more in-vehicle applications have been put into autonomous driving. For the computationally intensive task, the vehicle self-organizing network uses other high-performance nodes in the vehicle driving environment to hand over tasks to these nodes for execution. In this way, the computational load of the cloud alleviated. However, due to the unreliability of the communication link and the dynamic changes of the vehicle environment, lengthy task completion time may lead to the increase of task failure rate. Although the flooding algorithm can improve the success rate of task completion, the offloading expend will be large. Aiming at this problem, we design the partial flooding algorithm, which is a comprehensive evaluation method based on system reliability in the vehicle computing environment without infrastructure. Using V2V link to select some nodes with better performance for partial flooding offloading to reduce the task complete time, improve system reliability and cut down the impact of vehicle mobility on offloading. The results show that the proposed offloading strategy can not only improve the utilization of computing resources, but also promote the offloading performance of the system.


Sign in / Sign up

Export Citation Format

Share Document