scholarly journals A High-Precision Automatic Pointer Meter Reading System in Low-Light Environment

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4891
Author(s):  
Xuang Wu ◽  
Xiaobo Shi ◽  
Yongchao Jiang ◽  
Jun Gong

At present, pointer meters are still widely used because of their mechanical stability and electromagnetic immunity, and it is the main trend to use a computer vision-based automatic reading system to replace inefficient manual inspection. Many correction and recognition algorithms have been proposed for the problems of skew, distortion, and uneven illumination in the field-collected meter images. However, the current algorithms generally suffer from poor robustness, enormous training cost, inadequate compensation correction, and poor reading accuracy. This paper first designs a meter image skew-correction algorithm based on binary mask and improved Mask-RCNN for different types of pointer meters, which achieves high accuracy ellipse fitting and reduces the training cost by transfer learning. Furthermore, the low-light enhancement fusion algorithm based on improved Retinex and Fast Adaptive Bilateral Filtering (RBF) is proposed. Finally, the improved ResNet101 is proposed to extract needle features and perform directional regression to achieve fast and high-accuracy readings. The experimental results show that the proposed system in this paper has higher efficiency and better robustness in the image correction process in a complex environment and higher accuracy in the meter reading process.

2020 ◽  
Vol 8 (6) ◽  
pp. 5061-5063

Inspection on the dyed material in the textile industry is facing a challenging task owing to the accurate measurement of the dye concentration added. Currently manual inspection is done. It consumes more time and less accurate. The proposed work provides a solution to above problem. The image of reference material (cloth) is captured and the features are extracted using image processing techniques. The color concentration of both the reference material and the test fabric is compared. If the dye concentration of the test fabric matches with the reference material, then it is a perfect dyed cloth whereas for mismatched samples, the concentration is to be adjusted is displayed. This smart dyeing inspection system reduces the manual operation and saves time and results in high accuracy.


Author(s):  
Hyun Jun Park ◽  
Kwang Baek Kim

<p><span>Intel RealSense depth camera provides depth image using infrared projector and infrared camera. Using infrared radiation makes it possible to measure the depth with high accuracy, but the shadow of infrared radiation makes depth unmeasured regions. Intel RealSense SDK provides a postprocessing algorithm to correct it. However, this algorithm is not enough to be used and needs to be improved. Therefore, we propose a method to correct the depth image using image processing techniques. The proposed method corrects the depth using the adjacent depth information. Experimental results showed that the proposed method corrects the depth image more accurately than the Intel RealSense SDK.</span></p>


2019 ◽  
Vol 48 (6) ◽  
pp. 610001
Author(s):  
江泽涛 JIANG Ze-tao ◽  
何玉婷 HE Yu-ting ◽  
张少钦 ZHANG Shao-qin

Author(s):  
Guannan Chen ◽  
Huijing Lin ◽  
Chao Wei ◽  
Aisheng Xu ◽  
Haotian Yu ◽  
...  

Author(s):  
Junhua Zhao ◽  
Yue Jia ◽  
Ning Wei ◽  
Timon Rabczuk

The binding energy between two parallel (and two crossing) single-walled (and multi-walled) carbon nanotubes (CNTs) is obtained by continuum modelling of the van der Waals interaction between them. The dependence of the binding energy on their diameters, number of walls and crossing angles is systematically analysed. The critical length for the mechanical stability and adhesion of the CNTs is determined by the function of E i I i , h and γ , where E i I i , h and γ are the CNTs bending stiffness, distance and binding energy between them, respectively. Checking against full atom molecular dynamics calculations show that the continuum solution has high accuracy. The established analytical solutions should be of great help for designing nanoelectromechanical devices.


2018 ◽  
Vol 55 (10) ◽  
pp. 102804
Author(s):  
余越 Yu Yue ◽  
胡秀清 Hu Xiuqing ◽  
闵敏 Min Min ◽  
许廷发 Xu Tingfa ◽  
何玉青 He Yuqing ◽  
...  

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 188-196
Author(s):  
Zhang Xiaobing ◽  
Zhou Wei ◽  
Song Mengfei

AbstractIn order to accurately forecast the fracture and fracture dominance direction in oil exploration, in this paper, we propose a novel multi-sensor image fusion algorithm. The main innovations of this paper lie in that we introduce Dual-tree complex wavelet transform (DTCWT) in data fusion and divide an image to several regions before image fusion. DTCWT refers to a new type of wavelet transform, and it is designed to solve the problem of signal decomposition and reconstruction based on two parallel transforms of real wavelet. We utilize DTCWT to segment the features of the input images and generate a region map, and then exploit normalized Shannon entropy of a region to design the priority function. To test the effectiveness of our proposed multi-sensor image fusion algorithm, four standard pairs of images are used to construct the dataset. Experimental results demonstrate that the proposed algorithm can achieve high accuracy in multi-sensor image fusion, especially for images of oil exploration.


2019 ◽  
Vol 148 ◽  
pp. 75-85 ◽  
Author(s):  
Dongpo Yang ◽  
Xiaolan Wang ◽  
Yansong Wang ◽  
Hui Guo ◽  
Ningning Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document