scholarly journals Intention Prediction and Human Health Condition Detection in Reaching Tasks with Machine Learning Techniques

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5253
Author(s):  
Federica Ragni ◽  
Leonardo Archetti ◽  
Agnès Roby-Brami ◽  
Cinzia Amici ◽  
Ludovic Saint-Bauzel

Detecting human motion and predicting human intentions by analyzing body signals are challenging but fundamental steps for the implementation of applications presenting human–robot interaction in different contexts, such as robotic rehabilitation in clinical environments, or collaborative robots in industrial fields. Machine learning techniques (MLT) can face the limit of small data amounts, typical of this kind of applications. This paper studies the illustrative case of the reaching movement in 10 healthy subjects and 21 post-stroke patients, comparing the performance of linear discriminant analysis (LDA) and random forest (RF) in: (i) predicting the subject’s intention of moving towards a specific direction among a set of possible choices, (ii) detecting if the subject is moving according to a healthy or pathological pattern, and in the case of discriminating the damage location (left or right hemisphere). Data were captured with wearable electromagnetic sensors, and a sub-section of the acquired signals was required for the analyses. The possibility of detecting with which arm (left or right hand) the motion was performed, and the sensitivity of the MLT to variations in the length of the signal sub-section were also evaluated. LDA and RF prediction accuracies were compared: Accuracy improves when only healthy subjects or longer signals portions are considered up to 11% and at least 10%, respectively. RF reveals better estimation performance both as intention predictor (on average 59.91% versus the 62.19% of LDA), and health condition detector (over 90% in all the tests).

Author(s):  
Daniel Elton ◽  
Zois Boukouvalas ◽  
Mark S. Butrico ◽  
Mark D. Fuge ◽  
Peter W. Chung

We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, bag of bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.


2021 ◽  
Vol 3 ◽  
Author(s):  
Alberto Martinetti ◽  
Peter K. Chemweno ◽  
Kostas Nizamis ◽  
Eduard Fosch-Villaronga

Policymakers need to consider the impacts that robots and artificial intelligence (AI) technologies have on humans beyond physical safety. Traditionally, the definition of safety has been interpreted to exclusively apply to risks that have a physical impact on persons’ safety, such as, among others, mechanical or chemical risks. However, the current understanding is that the integration of AI in cyber-physical systems such as robots, thus increasing interconnectivity with several devices and cloud services, and influencing the growing human-robot interaction challenges how safety is currently conceptualised rather narrowly. Thus, to address safety comprehensively, AI demands a broader understanding of safety, extending beyond physical interaction, but covering aspects such as cybersecurity, and mental health. Moreover, the expanding use of machine learning techniques will more frequently demand evolving safety mechanisms to safeguard the substantial modifications taking place over time as robots embed more AI features. In this sense, our contribution brings forward the different dimensions of the concept of safety, including interaction (physical and social), psychosocial, cybersecurity, temporal, and societal. These dimensions aim to help policy and standard makers redefine the concept of safety in light of robots and AI’s increasing capabilities, including human-robot interactions, cybersecurity, and machine learning.


2021 ◽  
Vol 7 (2) ◽  
pp. 696-699
Author(s):  
Rassoul Sabeghi ◽  
Karl-Jürgen Bär ◽  
Andy Schumann

Abstract Aging is accompanied by changes in the cardiovascular physiology that promote the development of age-related diseases. This paper presents a modern approach to quantify the physiological effects of age on the cardiovascular system by applying modern machine learning techniques to several indicators of autonomic cardiovascular function. In 885 healthy subjects, 33 different indices were calculated on resting state electrocardiogram and continuous blood pressure recordings. Based on those parameters, five different approaches were applied in order to reconstruct the calendar age of healthy subjects, i.e., linear regression (LR), neural network (NN), Gaussian process regression (GPR), support vector regression (SVR), and relevance vector regression (RVR). Hyper parameters of machine learning methods were optimized via grid search. After 20 repetitions of a five-fold cross-validation, the mean absolute error (MAE) was computed between the calendar and estimated age to assess the accuracy of each method. The results show that the lowest error for age estimation was achieved using SVR with a MAE of 5.49 years. GPR performed comparably well to SVR with a MAE of 5.55 years, while NN led to a MAE of 5.72 years. RVR and LR revealed MAE of more than six years (6.21 and 6.34 years). The error of age estimation could be further reduced by applying outlier correction to the input data leading to a minimum MAE of 4.53 years with GPR. In conclusion, our results suggest that machine learning can be used to quantify the effects of healthy aging on cardio-vascular function.


2022 ◽  
Vol 8 ◽  
Author(s):  
Elsa J. Harris ◽  
I-Hung Khoo ◽  
Emel Demircan

We performed an electronic database search of published works from 2012 to mid-2021 that focus on human gait studies and apply machine learning techniques. We identified six key applications of machine learning using gait data: 1) Gait analysis where analyzing techniques and certain biomechanical analysis factors are improved by utilizing artificial intelligence algorithms, 2) Health and Wellness, with applications in gait monitoring for abnormal gait detection, recognition of human activities, fall detection and sports performance, 3) Human Pose Tracking using one-person or multi-person tracking and localization systems such as OpenPose, Simultaneous Localization and Mapping (SLAM), etc., 4) Gait-based biometrics with applications in person identification, authentication, and re-identification as well as gender and age recognition 5) “Smart gait” applications ranging from smart socks, shoes, and other wearables to smart homes and smart retail stores that incorporate continuous monitoring and control systems and 6) Animation that reconstructs human motion utilizing gait data, simulation and machine learning techniques. Our goal is to provide a single broad-based survey of the applications of machine learning technology in gait analysis and identify future areas of potential study and growth. We discuss the machine learning techniques that have been used with a focus on the tasks they perform, the problems they attempt to solve, and the trade-offs they navigate.


2021 ◽  
Vol 28 (2) ◽  
pp. 125-146

With the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review about recent researches published within each channel, along with the used methodologies and achieved results. Finally, some of the existing emotion recognition issues and recommendations for future works have been outlined.


2018 ◽  
Author(s):  
Daniel Elton ◽  
Zois Boukouvalas ◽  
Mark S. Butrico ◽  
Mark D. Fuge ◽  
Peter W. Chung

We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, Bag of Bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.


2018 ◽  
Author(s):  
Daniel Elton ◽  
Zois Boukouvalas ◽  
Mark S. Butrico ◽  
Mark D. Fuge ◽  
Peter W. Chung

We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, bag of bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.


Sign in / Sign up

Export Citation Format

Share Document