scholarly journals A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5871
Author(s):  
Gašper Škulj ◽  
Rok Vrabič ◽  
Primož Podržaj

Increasing the accessibility of collaborative robotics requires interfaces that support intuitive teleoperation. One possibility for an intuitive interface is offered by wearable systems that measure the operator’s movement and use the information for robot control. Such wearable systems should preserve the operator’s movement capabilities and, thus, their ability to flexibly operate in the workspace. This paper presents a novel wireless wearable system that uses only inertial measurement units (IMUs) to determine the orientation of the operator’s upper body parts. An algorithm was developed to transform the measured orientations to movement commands for an industrial collaborative robot. The algorithm includes a calibration procedure, which aligns the coordinate systems of all IMUs, the operator, and the robot, and the transformation of the operator’s relative hand motions to the movement of the robot’s end effector, which takes into account the operator’s orientation relative to the robot. The developed system is demonstrated with an example of an industrial application in which a workpiece needs to be inserted into a fixture. The robot’s motion is compared between the developed system and a standard robot controller. The results confirm that the developed system is intuitive, allows for flexible control, and is robust enough for use in industrial collaborative robotic applications.

2020 ◽  
Vol 10 (12) ◽  
pp. 4329 ◽  
Author(s):  
Rodrigo Pérez-Ubeda ◽  
Ranko Zotovic-Stanisic ◽  
Santiago C. Gutiérrez

Due to the elasticity of their joints, collaborative robots are seldom used in applications with force control. Besides, the industrial robot controllers are closed and do not allow the user to access the motor torques and other parameters, hindering the possibility of carrying out a customized control. A good alternative to achieve a custom force control is sending the output of the force regulator to the robot controller through motion commands (inner/outer loop control). There are different types of motion commands (e.g., position or velocity). They may be implemented in different ways (Jacobian inverse vs. Jacobian transpose), but this information is usually not available for the user. This article is dedicated to the analysis of the effect of different inner loops and their combination with several external controllers. Two of the most determinant factors found are the type of the inner loop and the stiffness matrix. The theoretical deductions have been experimentally verified on a collaborative robot UR3, allowing us to choose the best behaviour in a polishing operation according to pre-established criteria.


Author(s):  
Davide Quarta ◽  
Marcello Pogliani ◽  
Mario Polino ◽  
Federico Maggi ◽  
Andrea Maria Zanchettin ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 752 ◽  
Author(s):  
Junhua Gu ◽  
Chuanxin Lan ◽  
Wenbai Chen ◽  
Hu Han

While remarkable progress has been made to pedestrian detection in recent years, robust pedestrian detection in the wild e.g., under surveillance scenarios with occlusions, remains a challenging problem. In this paper, we present a novel approach for joint pedestrian and body part detection via semantic relationship learning under unconstrained scenarios. Specifically, we propose a Body Part Indexed Feature (BPIF) representation to encode the semantic relationship between individual body parts (i.e., head, head-shoulder, upper body, and whole body) and highlight per body part features, providing robustness against partial occlusions to the whole body. We also propose an Adaptive Joint Non-Maximum Suppression (AJ-NMS) to replace the original NMS algorithm widely used in object detection, leading to higher precision and recall for detecting overlapped pedestrians. Experimental results on the public-domain CUHK-SYSU Person Search Dataset show that the proposed approach outperforms the state-of-the-art methods for joint pedestrian and body part detection in the wild.


2019 ◽  
Vol 299 ◽  
pp. 02008 ◽  
Author(s):  
Miriam Matúšová ◽  
Marcela Bučányová ◽  
Erika Hrušková

Rapidly changing user requirements, improving of quality of life or increased safety at work are allarguments for introducing flexible automation that replaces strenuous or dangerous work. Industrial robots with adaptive directing are now deployed to most industries due to their large range of uses. Theirmain addition for manufacturing is to eliminate downtime of complete operating and manipulating production process, to make easier all particular operation in accordance with ergonomics. The paper describescomparing between conventional industrial robot and collaborative robot.


Author(s):  
Jun Huang ◽  
Duc Truong Pham ◽  
Yongjing Wang ◽  
Mo Qu ◽  
Chunqian Ji ◽  
...  

Human–robot collaborative disassembly is an approach designed to mitigate the effects of uncertainties associated with the condition of end-of-life products returned for remanufacturing. This flexible semi-autonomous approach can also handle unpredictability in the frequency and numbers of such returns as well as variance in the remanufacturing process. This article focusses on disassembly, which is the first and arguably the most critical step in remanufacturing. The article presents a new method for disassembling press-fitted components using human–robot collaboration based on the active compliance provided by a collaborative robot. The article first introduces the concepts of human–robot collaborative disassembly and outlines the method of active compliance control. It then details a case study designed to demonstrate the proposed method. The study involved the disassembly of an automotive water pump by a collaborative industrial robot working with a human operator to take apart components that had been press-fitted together. The results show the feasibility of the proposed method.


1996 ◽  
Vol 29 (1) ◽  
pp. 367-372
Author(s):  
C. Maffezzoni ◽  
G. Magnani ◽  
L. Ferrarini ◽  
G. Ferretti

2018 ◽  
Vol 15 (4) ◽  
pp. 172988141878791 ◽  
Author(s):  
Sepehr Gharaaty ◽  
Tingting Shu ◽  
Ahmed Joubair ◽  
Wen Fang Xie ◽  
Ilian A Bonev

In this article, a dynamic pose correction scheme is proposed to enhance the pose accuracy of industrial robots. The dynamic pose correction scheme uses the dynamic pose measurements as feedback to accurately guide the robot end-effector to the desired pose. The pose is measured online with an optical coordinate measure machine, that is, C-Track 780 from Creaform. A root mean square method is proposed to filter the noise from the pose measurements. The dynamic pose correction scheme adopts proportional-integral-derivaitve controller and generates commands to the FANUC robot controller. The developed dynamic pose correction scheme has been tested on two industrial robots, FANUC LR Mate 200iC and FANUC M20iA. The experimental results on both robots demonstrate that the robots can reach the desired pose with an accuracy of ±0.050 mm for position and ±0.050° for orientation. As a result, the developed pose correction can make the industrial robots meet higher accuracy requirement in the applications such as riveting, drilling, and spot welding.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 229 ◽  
Author(s):  
Alexis Fortin-Côté ◽  
Jean-Sébastien Roy ◽  
Laurent Bouyer ◽  
Philip Jackson ◽  
Alexandre Campeau-Lecours

Inertial measurement units have recently shown great potential for the accurate measurement of joint angle movements in replacement of motion capture systems. In the race towards long duration tracking, inertial measurement units increasingly aim to ensure portability and long battery life, allowing improved ecological studies. Their main advantage over laboratory grade equipment is their usability in a wider range of environment for greater ecological value. For accurate and useful measurements, these types of sensors require a robust orientation estimation that remains accurate over long periods of time. To this end, we developed the Allumo software for the preprocessing and calibration of the orientation estimate of triaxial accelerometers. This software has an automatic orientation calibration procedure, an automatic erroneous orientation-estimate detection and useful visualization to help process long and short measurement periods. These automatic procedures are detailed in this paper, and two case studies are presented to showcase the usefulness of the software. The Allumo software is open-source and available online.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhaoming Liu ◽  
Nailong Liu ◽  
Hongwei Wang ◽  
Shen Tian ◽  
Ning Bai ◽  
...  

Motion modularity is the main method of motion control for higher animals. That means the complex movements of the muscles are made up of basic motion primitives, and the brain or central nervous system does not care about the specific details of the movement. However, the industrial robot control system does not adopt the technical roadmap of motion modularity, it generates complex trajectories by providing a large number of sampling points. This approach is equivalent to using the brain to directly guide the specific movement of the muscle and has to rely on a faster Fieldbus system to obtain complex motion trajectories. This work constructs a modularized industrial robot trajectory generation component based on Dynamic Movement Primitives (DMP) theory. With this component, the robot controller can generate complex trajectories without increasing the sampling points and can obtain good trajectory accuracy. Finally, the rationality of this system is proved by simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document