scholarly journals An Improved Multioperator-Based Constrained Differential Evolution for Optimal Power Allocation in WSNs

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6271
Author(s):  
Wei Li ◽  
Wenyin Gong

Optimal power allocation (OPA), which can be transformed into an optimization problem with constraints, plays a key role in wireless sensor networks (WSNs). In this paper, inspired by ant colony optimization, an improved multioperator-based constrained adaptive differential evolution (namely, IMO-CADE) is proposed for the OPA. The proposed IMO-CADE can be featured as follows: (i) to adaptively select the proper operator among different operators, the feedback of operators and the status of individuals are considered simultaneously to assign the selection probability; (ii) the constrained reward assignment is used to measure the feedback of operators; (iii) the parameter adaptation is used for the parameters of differential evolution. To extensively evaluate the performance of IMO-CADE, it is used to solve the OPA for both the independent and correlated observations with different numbers of sensor nodes. Compared with other advanced methods, simulation results clearly indicate that IMO-CADE yields the best performance on the whole. Therefore, IMO-CADE can be an efficient alternative for the OPA of WSNs, especially for WSNs with a large number of sensor nodes.

2020 ◽  
Vol 28 (15) ◽  
pp. 21627
Author(s):  
Zanyang Dong ◽  
Tao Shang ◽  
Qian Li ◽  
Tang Tang

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anil Kumar Biswal ◽  
Debabrata Singh ◽  
Binod Kumar Pattanayak ◽  
Debabrata Samanta ◽  
Shehzad Ashraf Chaudhry ◽  
...  

Nowadays, the power consumption and dependable repeated data collection are causing the main issue for fault or collision in controller area network (CAN), which has a great impact for designing autonomous vehicle in smart cities. Whenever a smart vehicle is designed with several sensor nodes, Internet of Things (IoT) modules are linked through CAN for reliable transmission of a message for avoiding collision, but it is failed in communication due to delay and collision in communication of message frame from a source node to the destination. Generally, the emerging role of IoT and vehicles has undoubtedly brought a new path for tomorrow’s cities. The method proposed in this paper is used to gain fault-tolerant capability through Probabilistic Automatic Repeat Request (PARQ) and also Probabilistic Automatic Repeat Request (PARQ) with Fault Impact (PARQ-FI), in addition to providing optimal power allocation in CAN sensor nodes for enhancing the performance of the process and also significantly acting a role for making future smart cities. Several message frames are needed to be retransmitted on PARQ and fault impact (PARQ-FI) calculates the message with a response probability of each node.


2021 ◽  
Vol 46 ◽  
pp. 101296
Author(s):  
Shanshan Yu ◽  
Wali Ullah Khan ◽  
Xiaoqing Zhang ◽  
Ju Liu

Sign in / Sign up

Export Citation Format

Share Document