scholarly journals Application of Laser Scanning to Assess the Roughness of the Diaphragm Wall for the Estimation of Earth Pressure

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7275
Author(s):  
Marek Wyjadłowski ◽  
Zbigniew Muszyński ◽  
Paulina Kujawa

The correct estimation of earth pressure is important for the design of earth retaining structures and depends, among others, on the surface morphology of retaining structures. The diaphragm wall created as a protection of a deep excavation located in an urbanized area was selected as a research object. Terrestrial Laser Scanning (TLS) was used for the investigation of the unique surface (in real-world dimension) obtained by tremieying the concrete in different soil layers. An original and innovative procedure for concrete surface description was developed, which includes steps from the TLS measurement to the determination of the roughness parameters. The tested samples from anthropogenic soil, medium sand, and sandy gravel, map the real diaphragm wall surface. The surface roughness parameters in different soil layers were compared with the reference surface obtained by cast against steel formwork. The following parameters: Sa, Sdr, and Vmc are indicated as being the most useful in numerical description of the concrete surface type and in allowing the determination of the soil surface friction. The novelty of this study is the estimation of the parameter δ (friction angle between the retaining wall surface and the soil), which is, among others, a function of the wall surface roughness. The influence of the type of surface on earth pressure are generally recognized in laboratory tests. Based on the estimated in situ values of δ, the more reliable active and passive pressure coefficients Ka, Kp were calculated for the tested soil layers. The conducted study has a practical significance for designing of retaining construction and makes progress in determination of surface roughness required in Eurocode 7.

2020 ◽  
Vol 12 (1) ◽  
pp. 547-567
Author(s):  
Zbigniew Muszyński ◽  
Marek Wyjadłowski

AbstractThis article presents in situ research on the side surface of Vor der Wand (VDW) foundation piles using 3D laser scanning and close-range photogrammetry to assess the morphology of pile concrete surface. Contemporary analytical methods for estimation of the bearing capacity of the foundation pile surface require determination of the parameters of the concrete roughness and the model of the surface being formed, which corresponds to the pile technology used. Acquiring these data is difficult due to the formation of piles in the ground and their subsequent work as a structure buried in the ground. The VDW pile technology is one of the widespread technologies of foundation pile used in practice. These piles exhibit a specific configuration of the lateral surface, which is related to the simultaneous use of auger drilling and casing that rotates in opposite directions. Two geodetic techniques most often used to measure the geometry of buildings are terrestrial laser scanning and close-range photogrammetry. To empirically verify the suitability of these two techniques for describing the VDW pile surface parameters, a two-stage field study was performed. In the first stage, the measurements of concrete test surfaces were conducted. This surface was formed in a smooth formwork and its roughness parameters (in accordance with ISO 25178-2: 2012) were calculated and compared with the reference surface. In the second stage, measurements of the secant VDW sheet pile wall protecting the deep excavation were carried out. The roughness parameters of the pile surface were calculated for the selected areas in diverse geotechnical conditions. The original procedure for processing data (obtained using the above techniques) for assessment of roughness parameters of unique concrete surfaces was presented. The conducted research demonstrates that a pulse scanner has very limited usefulness for determination of roughness parameters for very smooth concrete surface; however, the photogrammetry techniques give acceptable results. In regard to the VDW pile surface, the results obtained from both measurement techniques give satisfactory consistency of the roughness parameters. The relative errors of calculated roughness parameters do not exceed 29% (average 12%). The proposed procedure may improve the accuracy of the assumed friction factor between pile surface and soil for assessment of the pile shaft bearing capacity for various pile technologies and soil conditions.


2016 ◽  
Vol 16 (1) ◽  
pp. 25-28 ◽  
Author(s):  
D. Kopyciński ◽  
E. Guzik ◽  
A. Szczęsny

Abstract The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.


Author(s):  
Maria E. Kowalska ◽  
Janina Zaczek-Peplinska

Abstract Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning. Roughness is the attribute of a surface that can be defined as a collection of small surface unevennesses that can be identified optically or detected mechanically which do not result from the surface’s shape and their size depends on a material type as well as on undergone processing. The most often utilised roughness parameters are: Ra - mean distance value of the points on the observed profile from the average line on the sampling length, and Rz - difference between arithmetic mean height of the five highest peaks and arithmetic mean depth of the five deepest valleys regarding to the average line on the length of the measured fragment. In practice, roughness parameters are most often defined for surface elements that require relevant manufacturing or processing through grinding, founding or polishing in order to provide the expected surface roughness. To measure those parameters for the produced elements profilometers are used. In this paper the authors present an alternative approach of determining and utilising such parameters. Instead of the utilising methods based on sampling length measurement, roughness parameters are determined on the basis of point clouds, that represent a surface of rough concrete, obtained through terrestrial laser scanning. The authors suggest using the surface roughness parameter data acquired in this way as a supplementary data in the condition assessment (erosion rate) of surfaces being a part of engineering constructions made of concrete.


2017 ◽  
Vol 260 ◽  
pp. 227-234
Author(s):  
Natalija Bulaha ◽  
Janis Lungevics ◽  
Janis Rudzitis

In this scientific article the recommendations for a three-dimensional surface roughness parameters determination of mechatronics elements are developed. First of all, the measurements for surface with irregular roughness were made, what led to the determination of a 3D roughness correlation function. On that basis correlation interval in two perpendicular treatment directions was calculated and associated with number of surface roughness uncorrelated points. Secondly, the surface roughness step parameters evaluation precision in two mutually perpendicular directions was analysed. Particular attention was paid to the roughness average step RSm in the treatment longitudinal direction. As a result, the recommendations for a 3D roughness parameters determination were prepared.


2017 ◽  
Vol 259 ◽  
pp. 15-20 ◽  
Author(s):  
Đorđe Čairović ◽  
Martin Zlámal ◽  
Petr Štěpánek ◽  
Tomáš Trčka ◽  
Pavel Škarvada ◽  
...  

In cases when two concrete parts are cast against in different times are not connected by dowels, main contributors to the resistance are cohesion and friction. Shear resistance of the interface is highly dependent on surface treatment and its roughness. In this paper, besides the review of available methods of surface roughness determination, the optical profilometry will be introduced and described. Optical profilometry represents non-contact and non-destructive method for characterizing surface topography. Furthermore, results obtained by abovementioned method will be compared with Sand Patch Test, in order to determine its usability and limitations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Leandro Tonietto ◽  
Luiz Gonzaga ◽  
Mauricio Roberto Veronez ◽  
Claudio de Souza Kazmierczak ◽  
Daiana Cristina Metz Arnold ◽  
...  

Abstract Quality evaluation of a material’s surface is performed through roughness analysis of surface samples. Several techniques have been presented to achieve this goal, including geometrical analysis and surface roughness analysis. Geometric analysis allows a visual and subjective evaluation of roughness (a qualitative assessment), whereas computation of the roughness parameters is a quantitative assessment and allows a standardized analysis of the surfaces. In civil engineering, the process is performed with mechanical profilometer equipment (2D) without adequate accuracy and laser profilometer (3D) with no consensus on how to interpret the result quantitatively. This work proposes a new method to evaluate surface roughness, starting from the generation of a visual surface roughness signature, which is calculated through the roughness parameters computed in hierarchically organized regions. The evaluation tools presented in this new method provide a local and more accurate evaluation of the computed coefficients. In the tests performed it was possible to quantitatively analyze roughness differences between ceramic blocks and to find that a quantitative microscale analysis allows to identify the largest variation of roughness parameters Raavg, Rasdv, Ramin and Ramax between samples, which benefit the evaluation and comparison of the sampled surfaces.


Sign in / Sign up

Export Citation Format

Share Document