scholarly journals A Novel Occupancy Mapping Framework for Risk-Aware Path Planning in Unstructured Environments

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7562
Author(s):  
Johann Laconte ◽  
Abderrahim Kasmi ◽  
François Pomerleau ◽  
Roland Chapuis ◽  
Laurent Malaterre ◽  
...  

In the context of autonomous robots, one of the most important tasks is to prevent potential damage to the robot during navigation. For this purpose, it is often assumed that one must deal with known probabilistic obstacles, then compute the probability of collision with each obstacle. However, in complex scenarios or unstructured environments, it might be difficult to detect such obstacles. In these cases, a metric map is used, where each position stores the information of occupancy. The most common type of metric map is the Bayesian occupancy map. However, this type of map is not well suited for computing risk assessments for continuous paths due to its discrete nature. Hence, we introduce a novel type of map called the Lambda Field, which is specially designed for risk assessment. We first propose a way to compute such a map and the expectation of a generic risk over a path. Then, we demonstrate the benefits of our generic formulation with a use case defining the risk as the expected collision force over a path. Using this risk definition and the Lambda Field, we show that our framework is capable of doing classical path planning while having a physical-based metric. Furthermore, the Lambda Field gives a natural way to deal with unstructured environments, such as tall grass. Where standard environment representations would always generate trajectories going around such obstacles, our framework allows the robot to go through the grass while being aware of the risk taken.

2019 ◽  
pp. 649-662
Author(s):  
Ning Gui ◽  
Vincenzo De Florio ◽  
Chris Blondia

Autonomous Robots normally perform tasks in unstructured environments, with little or no continuous human guidance. This calls for context-aware, self-adaptive software systems. This paper aims at providing a flexible adaptive middleware platform to seamlessly integrate multiple adaptation logics during the run-time. To support such an approach, a reconfigurable middleware system “ACCADA” was designed to provide compositional adaptation. During the run-time, context knowledge is used to select the most appropriate adaptation modules so as to compose an adaptive system best-matching the current exogenous and endogenous conditions. Together with a structure modeler, this allows robotic applications' structure to be autonomously (re)-constructed and (re)-configured. This paper applies this model on a Lego NXT robot system. A remote NXT model is designed to wrap and expose native NXT devices into service components that can be managed during the run-time. A dynamic UI is implemented which can be changed and customized according to system conditions. Results show that the framework changes robot adaptation behavior during the run-time.


2020 ◽  
Vol 12 (11) ◽  
pp. 1870 ◽  
Author(s):  
Qingqing Li ◽  
Paavo Nevalainen ◽  
Jorge Peña Queralta ◽  
Jukka Heikkonen ◽  
Tomi Westerlund

Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local point clouds are matched to a global tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 200 m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12 cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5 m/s. The accuracy and speed limit are realistic during forest operations.


Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1144-1166 ◽  
Author(s):  
Héctor Azpúrua ◽  
Gustavo M. Freitas ◽  
Douglas G. Macharet ◽  
Mario F. M. Campos

SUMMARYThe field of robotics has received significant attention in our society due to the extensive use of robotic manipulators; however, recent advances in the research on autonomous vehicles have demonstrated a broader range of applications, such as exploration, surveillance, and environmental monitoring. In this sense, the problem of efficiently building a model of the environment using cooperative mobile robots is critical. Finding routes that are either length or time-optimized is essential for real-world applications of small autonomous robots. This paper addresses the problem of multi-robot area coverage path planning for geophysical surveys. Such surveys have many applications in mineral exploration, geology, archeology, and oceanography, among other fields. We propose a methodology that segments the environment into hexagonal cells and allocates groups of robots to different clusters of non-obstructed cells to acquire data. Cells can be covered by lawnmower, square or centroid patterns with specific configurations to address the constraints of magneto-metric surveys. Several trials were executed in a simulated environment, and a statistical investigation of the results is provided. We also report the results of experiments that were performed with real Unmanned Aerial Vehicles in an outdoor setting.


1998 ◽  
Vol 34 (2) ◽  
pp. 223 ◽  
Author(s):  
C. Urdiales ◽  
A. Bandera ◽  
F. Arrebola ◽  
F. Sandoval

Robotica ◽  
1992 ◽  
Vol 10 (2) ◽  
pp. 125-133 ◽  
Author(s):  
A. Pruski

SUMMARYThe paper describes a free space modeling method by multivalue coding. Each code defines some numerical values representing a set of cells from a grid. The idea consists in using the grid as a Karnaugh board whose rows and columns are binary coded rather than Gray coded. This operating method allows to define, for each code, its grid location and allows numerical comparison in order to locate a code relatively to another. This aspect is helpful for path planning. The free space model is represented by a switching function or a tree to which boolean algebra rules and mathematic operations are applied. We describe an application to mobile robot path planning.


Sign in / Sign up

Export Citation Format

Share Document