scholarly journals Over-Actuated Underwater Robots: Configuration Matrix Design and Perspectives

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7729
Author(s):  
Tho Dang ◽  
Lionel Lapierre ◽  
Rene Zapata ◽  
Benoit Ropars ◽  
Pascal Lepinay

In general, for the configuration designs of underwater robots, the positions and directions of actuators (i.e., thrusters) are given and installed in conventional ways (known points, vertically, horizontally). This yields limitations for the capability of robots and does not optimize the robot’s resources such as energy, reactivity, and versatility, especially when the robots operate in confined environments. In order to optimize the configuration designs in the underwater robot field focusing on over-actuated systems, in the paper, performance indices (manipulability, energetic, reactive, and robustness indices) are introduced. The multi-objective optimization problem was formulated and analyzed. To deal with different objectives with different units, the goal-attainment method, which can avoid the difficulty of choosing a weighting vector to obtain a good balance among these objectives, was selected to solve the problem. A solution design procedure is proposed and discussed. The efficiency of the proposed method was proven by simulations and experimental results.

2005 ◽  
Vol 2 (2) ◽  
pp. 103-110 ◽  
Author(s):  
M. Ceccarelli ◽  
N. E. N. Rodríguez ◽  
G. Carbone ◽  
C. Lopez-Cajùn

Mechanisms can be used in finger design to obtain suitable actuation systems and to give stiff robust behavior in grasping tasks. The design of driving mechanisms for fingers has been attached at LARM in Cassino with the aim to obtain one degree of freedom actuation for an anthropomorphic finger. The dimensional design of a finger-driving mechanism has been formulated as a multi-objective optimization problem by using evaluation criteria for fundamental characteristics regarding with finger motion, grasping equilibrium and force transmission. The feasibility of the herein proposed optimum design procedure for a finger-driving mechanism has been tested by numerical examples that have been also used to enhance a prototype previously built at LARM in Cassino.


Author(s):  
G Carbone ◽  
E Ottaviano ◽  
M Ceccarelli

Serial and parallel manipulators can be used in different manipulative tasks when their peculiarities in kinematic and dynamic behaviours are properly considered from the design stage. The basic performance in workspace, mobility constraints, and stiffness makes them alternative solutions and not competitive manipulator chains. Thus, it is convenient to deduce a common design procedure that considers common design criteria, but specific numerical evaluations. In this paper, a multi-objective optimization problem has been proposed to formulate a unique design procedure that takes into account the contradicting design optimality criteria in terms of suitable general algorithms for workspace volumes, Jacobian matrices, and compliant displacements. Numerical examples are reported to show not just the feasibility but also the numerical efficiency of the proposed formulations.


2014 ◽  
Vol 5 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Szymon Piasecki ◽  
Robert Szmurlo ◽  
Marek Jasinski

Abstract Power electronic circuits, in particular AC-DC converters are complex systems, many different parameters and objectives have to be taken into account during the design process. Implementation of Multi-Objective Optimization (MOO) seems to be attractive idea, which used as designer supporting tool gives possibility for better analysis of the designed system. This paper presents a short introduction to the MOO applied in the field of power electronics. Short introduction to the subject is given in section I. Then, optimization process and its elements are briefly described in section II. Design procedure with proposed optimization parameters and performance indices for AC-DC Grid Connected Converter (GCC) interfacing distributed systems is introduced in section III. Some preliminary optimization results, achieved on the basis of analytical and simulation study, are shown at each stage of designing process. Described optimization parameters and performance indices are part of developed global optimization method dedicated for ACDC GCC introduced in section IV. Described optimization method is under development and only short introduction and basic assumptions are presented. In section V laboratory prototype of high efficient and compact 14 kVA AC-DC converter is introduced. The converter is elaborated based on performed designing and optimization procedure with the use of silicon carbide (SiC) power semiconductors. Finally, the paper is summarized and concluded in section VI. In presented work theoretical research are conducted in parallel with laboratory prototyping e.g. all theoretical ideas are verified in laboratory using modern DSP microcontrollers and prototypes of the ACDC GCC.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


2021 ◽  
pp. 1-13
Author(s):  
Hailin Liu ◽  
Fangqing Gu ◽  
Zixian Lin

Transfer learning methods exploit similarities between different datasets to improve the performance of the target task by transferring knowledge from source tasks to the target task. “What to transfer” is a main research issue in transfer learning. The existing transfer learning method generally needs to acquire the shared parameters by integrating human knowledge. However, in many real applications, an understanding of which parameters can be shared is unknown beforehand. Transfer learning model is essentially a special multi-objective optimization problem. Consequently, this paper proposes a novel auto-sharing parameter technique for transfer learning based on multi-objective optimization and solves the optimization problem by using a multi-swarm particle swarm optimizer. Each task objective is simultaneously optimized by a sub-swarm. The current best particle from the sub-swarm of the target task is used to guide the search of particles of the source tasks and vice versa. The target task and source task are jointly solved by sharing the information of the best particle, which works as an inductive bias. Experiments are carried out to evaluate the proposed algorithm on several synthetic data sets and two real-world data sets of a school data set and a landmine data set, which show that the proposed algorithm is effective.


Author(s):  
Rafael Loureiro Tanaka ◽  
Lauro Massao Yamada da Silveira ◽  
Joa˜o Paulo Zi´lio Novaes ◽  
Eduardo Esterqui de Barros ◽  
Clo´vis de Arruda Martins

Bending stiffeners are very important ancillary equipments of umbilicals or flexible risers, since they protect the lines from overbending. Their design however is a complex task, since many load cases must be taken into account; the structure itself has a section that is variable with curvilinear coordinate. To aid the designer in this task, optimization algorithms can be used to automate the search for the best design. In this work an optimization algorithm is applied to the design of the bending stiffener. First, a bending stiffener model is created, which is capable of simulating different load case conditions and provide, as output, results of interest such as maximum curvature, deformation along the stiffener, shear forces and so on. Then, a bending stiffener design procedure is written as an optimization problem and, for that, objective function, restrictions and design variables defined. Study cases were performed, comparing a regular design with its optimized counterpart, under varying conditions.


2019 ◽  
Vol 25 (5) ◽  
pp. 875-887
Author(s):  
Elnaz Asadollahi-Yazdi ◽  
Julien Gardan ◽  
Pascal Lafon

Purpose This paper aims to provide a multi-objective optimization problem in design for manufacturing (DFM) approach for fused deposition modeling (FDM). This method considers the manufacturing criteria and constraints during the design by selecting the best manufacturing parameters to guide the designer and manufacturer in fabrication with FDM. Design/methodology/approach Topological optimization and bi-objective optimization problems are suggested to complete the DFM approach for design for additive manufacturing (DFAM) to define a product. Topological optimization allows the shape improvement of the product through a material distribution for weight gain based on the desired mechanical behavior. The bi-objective optimization problem plays an important role to evaluate the manufacturability by quantification and optimization of the manufacturing criteria and constraint simultaneously. Actually, it optimizes the production time, required material regarding surface quality and mechanical properties of the product because of two significant parameters as layer thickness and part orientation. Findings A comprehensive analysis of the existing DFAM approaches illustrates that these approaches are not developed sufficiently in terms of manufacturability evaluation in quantification and optimization levels. There is no approach that investigates the AM criteria and constraints simultaneously. It is necessary to provide a decision-making tool for the designers and manufacturers to lead to better design and manufacturing regarding the different AM characteristics. Practical implications To assess the efficiency of this approach, a wheel spindle is considered as a case study which shows how this method is capable to find the best design and manufacturing solutions. Originality/value A multi-criteria decision-making approach as the main contribution is developed to analyze FDM technology and its attributes, criteria and drawbacks. It completes the DFAM approach for FDM through a bi-objective optimization problem which deals with finding the best manufacturing parameters by optimizing production time and material mass because of the product mechanical properties and surface roughness.


2019 ◽  
Vol 44 (4) ◽  
pp. 407-426
Author(s):  
Jedrzej Musial ◽  
Emmanuel Kieffer ◽  
Mateusz Guzek ◽  
Gregoire Danoy ◽  
Shyam S. Wagle ◽  
...  

Abstract Cloud computing has become one of the major computing paradigms. Not only the number of offered cloud services has grown exponentially but also many different providers compete and propose very similar services. This situation should eventually be beneficial for the customers, but considering that these services slightly differ functionally and non-functionally -wise (e.g., performance, reliability, security), consumers may be confused and unable to make an optimal choice. The emergence of cloud service brokers addresses these issues. A broker gathers information about services from providers and about the needs and requirements of the customers, with the final goal of finding the best match. In this paper, we formalize and study a novel problem that arises in the area of cloud brokering. In its simplest form, brokering is a trivial assignment problem, but in more complex and realistic cases this does not longer hold. The novelty of the presented problem lies in considering services which can be sold in bundles. Bundling is a common business practice, in which a set of services is sold together for the lower price than the sum of services’ prices that are included in it. This work introduces a multi-criteria optimization problem which could help customers to determine the best IT solutions according to several criteria. The Cloud Brokering with Bundles (CBB) models the different IT packages (or bundles) found on the market while minimizing (maximizing) different criteria. A proof of complexity is given for the single-objective case and experiments have been conducted with a special case of two criteria: the first one being the cost and the second is artificially generated. We also designed and developed a benchmark generator, which is based on real data gathered from 19 cloud providers. The problem is solved using an exact optimizer relying on a dichotomic search method. The results show that the dichotomic search can be successfully applied for small instances corresponding to typical cloud-brokering use cases and returns results in terms of seconds. For larger problem instances, solving times are not prohibitive, and solutions could be obtained for large, corporate clients in terms of minutes.


Sign in / Sign up

Export Citation Format

Share Document