scholarly journals Evaluation of a Chair-Mounted Passive Trunk Orthosis: A Pilot Study on Able-Bodied Subjects

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8366
Author(s):  
Ahmad Zahid Rao ◽  
Muhammad Abul Hasan

Trunk stability is important for adequate arm function due to their kinematic linkage. People with Duchenne muscular dystrophy (DMD) can benefit from trunk-assistive devices for seated daily activities, but existing devices limit trunk movement to forward bending. We developed a new trunk orthosis that has spring and pulley design. This study evaluated orthosis performance with 40 able-bodied subjects under with and without orthosis condition in 20 seated tasks for trunk rotation, forward bending, and side bending movements. Subjects adopted static posture in specific trunk orientation while their muscle activity was recorded. They also rated the subjective scales of perceived exertion and usability. A percent change in muscle activity for each task, due to orthosis use, is reported. Significant muscle activity reductions up to 31% and 65% were observed in lumbar and thoracic erector spinae muscles, respectively. Using three-way ANOVA, we found these reductions to be specific to the task direction and the choice of upper limb that is used to perform the asymmetric tasks. A total of 70% participants reported acceptable usability and ~1-point increase in exertion was found for maximum voluntary reaching with the orthosis. The outcomes of this study are promising, though tested on able-bodied subjects. Hence, orthosis mounted on wheelchairs should be further evaluated on DMD patients.

2019 ◽  
Vol 40 (01) ◽  
pp. 29-37
Author(s):  
Peemongkon Wattananon ◽  
Komsak Sinsurin ◽  
Sirikarn Somprasong

Background: Evidence suggests patients with non-specific low back pain (NSLBP) have altered lumbar and pelvic movement patterns. These changes could be associated with altered patterns of muscle activation. Objective: The study aimed to determine: (1) differences in the relative contributions and velocity of lumbar and pelvic movements between people with and without NSLBP, (2) the differences in lumbopelvic muscle activation patterns between people with and without NSLBP, and (3) the association between lumbar and pelvic movements and lumbopelvic muscle activation patterns. Methods: Subjects (8 healthy individuals and 8 patients with NSLBP) performed 2 sets of 3 repetitions of active forward bending, while motion and muscle activity data were collected simultaneously. Data derived were lumbar and pelvic ranges of motion and velocity, and ipsilateral and contralateral lumbopelvic muscle activities (internal oblique[Formula: see text]transverse abdominis (IO[Formula: see text]TA), lumbar multifidus (LM), erector spinae (ES) and gluteus maximus (GM) muscles). Results: Lumbar and pelvic motions showed trends, but exceeded 95% confidence minimal detectable difference (MDD[Formula: see text]), for greater pelvic motion [Formula: see text], less lumbar motion [Formula: see text] among patients with NSLBP. Significantly less activity was observed in the GM muscles bilaterally [Formula: see text] in the NSLBP group. A significant association [Formula: see text], [Formula: see text] was found between ipsilateral ES muscle activity and lumbar motion, while moderate, but statistically non-significant associations, were found between GM muscle activity bilaterally and lumbar velocity [Formula: see text]ipsilateral: [Formula: see text], [Formula: see text]; contralateral: [Formula: see text], [Formula: see text] in the NSLBP group. Conclusion: Findings indicated patients had greater pelvic contribution, but less lumbar contribution which was associated with less activation of the GM bilaterally.


Scientifica ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jonas Vinstrup ◽  
Emil Sundstrup ◽  
Mikkel Brandt ◽  
Markus D. Jakobsen ◽  
Joaquin Calatayud ◽  
...  

Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine.Methods. 17 untrained men aged 26–67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC).Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36–64] versus 32% [95% CI 18–46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64–90] versus 54% [95% CI 40–67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88–6.72]) and elastic exercise (5.7 [95% CI 4.81–6.59]).Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.


Author(s):  
Sang-Yeol Lee ◽  
Se-Yeon Park

BACKGROUND: Recent clinical studies have revealed the advantages of using suspension devices. Although the supine, lateral, and forward leaning bridge exercises are low-intensity exercises with suspension devices, there is a lack of studies directly comparing exercise progression by measuring muscular activity and subjective difficulty. OBJECTIVE: To identify how the variations in the bridge exercise affects trunk muscle activity, the present study investigated changes in neuromuscular activation during low-intensity bridge exercises. We furthermore explored whether the height of the suspension point affects muscle activation and subjective difficulty. METHODS: Nineteen asymptomatic male participants were included. Three bridge exercise positions, supine bridge (SB), lateral bridge (LB), forward leaning (FL), and two exercise angles (15 and 30 degrees) were administered, thereby comparing six bridge exercise conditions with suspension devices. Surface electromyography and subjective difficulty data were collected. RESULTS: The rectus abdominis activity was significantly higher with the LB and FL exercises compared with the SB exercise (p< 0.05). The erector spinae muscle activity was significantly higher with the SB and LB exercises, compared with the FL exercise (p< 0.05). The LB exercise significantly increased the internal oblique muscle activity, compared with other exercise variations (p< 0.05). The inclination angle of the exercise only affected the internal oblique muscle and subjective difficulty, which were significantly higher at 30 degrees compared with 15 degrees (p< 0.05). CONCLUSIONS: Relatively higher inclination angle was not effective in overall activation of the trunk muscles; however, different bridge-type exercises could selectively activate the trunk muscles. The LB and SB exercises could be good options for stimulating the internal oblique abdominis, and the erector spinae muscle, while the FL exercise could minimize the erector spinae activity and activate the abdominal muscles.


Author(s):  
Tessy Luger ◽  
Mona Bär ◽  
Robert Seibt ◽  
Monika A. Rieger ◽  
Benjamin Steinhilber

Objective To investigate the effect of using a passive back-support exoskeleton (Laevo V2.56) on muscle activity, posture, heart rate, performance, usability, and wearer comfort during a course of three industrial tasks (COU; exoskeleton worn, turned-on), stair climbing test (SCT; exoskeleton worn, turned-off), timed-up-and-go test (TUG; exoskeleton worn, turned-off) compared to no exoskeleton. Background Back-support exoskeletons have the potential to reduce work-related physical demands. Methods Thirty-six men participated. Activity of erector spinae (ES), biceps femoris (BF), rectus abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM), trapezius descendens (TD) was recorded by electromyography; posture by trunk, hip, knee flexion angles; heart rate by electrocardiography; performance by time-to-task accomplishment (s) and perceived task difficulty (100-mm visual analogue scale; VAS); usability by the System Usability Scale (SUS) and all items belonging to domains skepticism and user-friendliness of the Technology Usage Inventory; wearer comfort by the 100-mm VAS. Results During parts of COU, using the exoskeleton decreased ES and BF activity and trunk flexion, and increased RA, GM, and TD activity, knee and hip flexion. Wearing the exoskeleton increased time-to-task accomplishment of SCT, TUG, and COU and perceived difficulty of SCT and TUG. Average SUS was 75.4, skepticism 11.5/28.0, user-friendliness 18.0/21.0, wearer comfort 31.1 mm. Conclusion Using the exoskeleton modified muscle activity and posture depending on the task applied, slightly impaired performance, and was evaluated mildly uncomfortable. Application These outcomes require investigating the effects of this passive back-supporting exoskeleton in longitudinal studies with longer operating times, providing better insights for guiding their application in real work settings.


2014 ◽  
Vol 564 ◽  
pp. 644-649 ◽  
Author(s):  
Halim Isa ◽  
Rawaida ◽  
Seri Rahayu Kamat ◽  
A. Rohana ◽  
Adi Saptari ◽  
...  

In industries, manual lifting is commonly practiced even though mechanized material handling equipment are provided. Manual lifting is used to transport or move products and goods to a desired place.Improper lifting techniquescontribute to muscle fatigue and low back pain that can lead to work efficiency and low productivity.The objective of this study were to analyze muscle activity in the left and right Erector Spinae, and left and right Biceps Brachii of five female subjects while performing manual lifting taskwithdifferent load mass, lifting height and twist angle.The muscle activitywere measured and analyzed using surface electromyography (sEMG).This study found that the right Biceps Brachii, right and left Erector Spinae experienced fatigue while performingasymmetric lifting (twist angle = 90°) at lifting height of 75 cm and 140 cm with load mass of 5 kg and 10 kg. Meanwhile, the left Biceps Brachii experienced fatigue when the lifting task was set at lifting height of 75 cm, load mass of 5 kg and twist angle of 90°.The load mass and lifting height has a significant influence to Mean Power Frequency (MPF) for left Biceps Brachii, left and right Erector Spinae. This study concluded that reducing the load mass can increase the muscles performance which can extend the transition-to-fatigue stage in the left and right Biceps Brachii and Erector Spinae.


2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


2021 ◽  
Vol 21 (3) ◽  
pp. 253-263
Author(s):  
Abir Samanta ◽  
Sabyasachi Mukherjee

The aims of the study were: 1. To analyse the discriminative power of neuromuscular components for classifying the pre and post muscle fatigued states. 2. To examine whether the modification of neural recruitment strategies become more/less heterogeneous due to fatigue. 3. To research the effect of Erector Spinae (ES) muscle activity collectively with Rectus Abdominis (RA) and External Oblique (EO) muscle activity to identify the reduced spine stability during fatiguing Plank.  Material and methods. Twelve boys (age – 12-14 years, height 148.75 ± 10 cm, body mass 38.9 ± 7.9 kg) participated in the study. Multivariate Discriminant Analysis (DA) and Principal Component Analysis (PCA) were applied to identify the changes in the pattern of the electromyographic signals during muscle fatigue. In DA the Wilks’ lambda, p-value, canonical correlation, classification percentage and structure matrix were used. To evaluate the component validity the standard limit for Kaiser-Meyer-Olkin (KMO) was set at ≥0.529 and the p-value of Bartlett’s test was ≤0.001. The eigenvalues ≥1 were used to determine the number of Principal Components (PCs). The satisfactory percentage of non-redundant residuals were set at ≤50% with standard value >0.05. The absolute value of average communality (x̄ h2) and component loadings were set at ≥0.6, ≥0.4 respectively.  Results. Standardized canonical discriminant analysis showed that pre and post fatigued conditions were significantly different (p = 0.000, Wilks’ lambda = 0.297, χ2 = 24.914, df=3). The structure matrix showed that the parameter that correlated highly with the discriminant function was ES ARV (0.514). The results showed that the classification accuracy was 95.8% between fatigued conditions. In PCA the KMO values were reduced [0.547Pre fatigue vs. 0.264Post fatigue]; the value of Bartlett’s sphericity test was in pre χ2 = 90.72 (p = 0.000) and post fatigue χ2 = 85.32 (p = 0.000); The Promax criterion with Kaiser Normalization was applied because the component rotation was non-orthogonal [Component Correlation Matrix (rCCM) = 0.520 Pre fatigue >0.3Absolute<0.357Post fatigue]. In pre fatigue two PCs (cumulative s2 – 80.159%) and post fatigue three PCs (cumulative s2 – 83.845%) had eigenvalues ≥1. The x̄ h2 increased [0.802 Pre fatigue vs. 0.838 Post fatigue] and the percentage of nonredundant residuals reduced [50% Pre fatigue vs. 44% Post fatigue] from pre to post fatigue.  Conclusions. The variability and heterogeneity increase in the myoelectric signals due to fatigue. The co-activity of antagonist ES muscle is significantly sensitive to identify the deteriorating spine stability during the fatiguing Plank. Highly correlated motor unit recruitment strategies between ES and RA, providing supportive evidence to the concept of shared agonist-antagonist motoneuron pool or “Common Drive” phenomenon during fatigue.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6646
Author(s):  
Jacqueline Toner ◽  
Jeremy Rickards ◽  
Kenneth Seaman ◽  
Usha Kuruganti

Previous research identifies that pushing and pulling is responsible for approximately 9–18% of all low back injuries. Additionally, the handle design of a cart being pushed can dramatically alter a worker’s capacity to push (≅9.5%). Surprisingly little research has examined muscle activation of the low back and its role in muscle function. Therefore, the purpose of this study was to examine the effects of handle design combination of pushing a platform truck cart on trunk muscle activity. Twenty participants (10 males and 10 females, mean age = 24.3 ± 4.3 years) pushed 475 lbs using six different handle combinations involving handle orientation (vertical/horizontal/semi-pronated) and handle height (hip/shoulder). Multichannel high-density EMG (HDsEMG) was recorded for left and right rectus abdominis, erector spinae, and external obliques. Pushing at hip height with a horizontal handle orientation design (HH) resulted in significantly less (p < 0.05) muscle activity compared to the majority of other handle designs, as well as a significantly higher entropy than the shoulder handle height involving either the semi-pronated (p = 0.023) or vertical handle orientation (p = 0.028). The current research suggests that the combination of a hip height and horizontal orientation handle design may require increased muscle demand of the trunk and alter the overall muscle heterogeneity and pattern of the muscle activity.


Sign in / Sign up

Export Citation Format

Share Document