scholarly journals Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 123
Author(s):  
Ariyo Oluwasanmi ◽  
Muhammad Umar Aftab ◽  
Edward Baagyere ◽  
Zhiguang Qin ◽  
Muhammad Ahmad ◽  
...  

Today, accurate and automated abnormality diagnosis and identification have become of paramount importance as they are involved in many critical and life-saving scenarios. To accomplish such frontiers, we propose three artificial intelligence models through the application of deep learning algorithms to analyze and detect anomalies in human heartbeat signals. The three proposed models include an attention autoencoder that maps input data to a lower-dimensional latent representation with maximum feature retention, and a reconstruction decoder with minimum remodeling loss. The autoencoder has an embedded attention module at the bottleneck to learn the salient activations of the encoded distribution. Additionally, a variational autoencoder (VAE) and a long short-term memory (LSTM) network is designed to learn the Gaussian distribution of the generative reconstruction and time-series sequential data analysis. The three proposed models displayed outstanding ability to detect anomalies on the evaluated five thousand electrocardiogram (ECG5000) signals with 99% accuracy and 99.3% precision score in detecting healthy heartbeats from patients with severe congestive heart failure.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1181
Author(s):  
Chenhao Zhu ◽  
Sheng Cai ◽  
Yifan Yang ◽  
Wei Xu ◽  
Honghai Shen ◽  
...  

In applications such as carrier attitude control and mobile device navigation, a micro-electro-mechanical-system (MEMS) gyroscope will inevitably be affected by random vibration, which significantly affects the performance of the MEMS gyroscope. In order to solve the degradation of MEMS gyroscope performance in random vibration environments, in this paper, a combined method of a long short-term memory (LSTM) network and Kalman filter (KF) is proposed for error compensation, where Kalman filter parameters are iteratively optimized using the Kalman smoother and expectation-maximization (EM) algorithm. In order to verify the effectiveness of the proposed method, we performed a linear random vibration test to acquire MEMS gyroscope data. Subsequently, an analysis of the effects of input data step size and network topology on gyroscope error compensation performance is presented. Furthermore, the autoregressive moving average-Kalman filter (ARMA-KF) model, which is commonly used in gyroscope error compensation, was also combined with the LSTM network as a comparison method. The results show that, for the x-axis data, the proposed combined method reduces the standard deviation (STD) by 51.58% and 31.92% compared to the bidirectional LSTM (BiLSTM) network, and EM-KF method, respectively. For the z-axis data, the proposed combined method reduces the standard deviation by 29.19% and 12.75% compared to the BiLSTM network and EM-KF method, respectively. Furthermore, for x-axis data and z-axis data, the proposed combined method reduces the standard deviation by 46.54% and 22.30% compared to the BiLSTM-ARMA-KF method, respectively, and the output is smoother, proving the effectiveness of the proposed method.


Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5762
Author(s):  
Syed Basit Ali Bukhari ◽  
Khawaja Khalid Mehmood ◽  
Abdul Wadood ◽  
Herie Park

This paper presents a new intelligent islanding detection scheme (IIDS) based on empirical wavelet transform (EWT) and long short-term memory (LSTM) network to identify islanding events in microgrids. The concept of EWT is extended to extract features from three-phase signals. First, the three-phase voltage signals sampled at the terminal of targeted distributed energy resource (DER) or point of common coupling (PCC) are decomposed into empirical modes/frequency subbands using EWT. Then, instantaneous amplitudes and instantaneous frequencies of the three-phases at different frequency subbands are combined, and various statistical features are calculated. Finally, the EWT-based features along with the three-phase voltage signals are input to the LSTM network to differentiate between non-islanding and islanding events. To assess the efficacy of the proposed IIDS, extensive simulations are performed on an IEC microgrid and an IEEE 34-node system. The simulation results verify the effectiveness of the proposed IIDS in terms of non-detection zone (NDZ), computational time, detection accuracy, and robustness against noisy measurement. Furthermore, comparisons with existing intelligent methods and different LSTM architectures demonstrate that the proposed IIDS offers higher reliability by significantly reducing the NDZ and stands robust against measurements uncertainty.


2021 ◽  
Author(s):  
Jiaojiao Wang ◽  
Dongjin Yu ◽  
Chengfei Liu ◽  
Xiaoxiao Sun

Abstract To effectively predict the outcome of an on-going process instance helps make an early decision, which plays an important role in so-called predictive process monitoring. Existing methods in this field are tailor-made for some empirical operations such as the prefix extraction, clustering, and encoding, leading that their relative accuracy is highly sensitive to the dataset. Moreover, they have limitations in real-time prediction applications due to the lengthy prediction time. Since Long Short-term Memory (LSTM) neural network provides a high precision in the prediction of sequential data in several areas, this paper investigates LSTM and its enhancements and proposes three different approaches to build more effective and efficient models for outcome prediction. The first move on enhancement is that we combine the original LSTM network from two directions, forward and backward, to capture more features from the completed cases. The second move on enhancement is that we add attention mechanism after extracting features in the hidden layer of LSTM network to distinct them from their attention weight. A series of extensive experiments are evaluated on twelve real datasets when comparing with other approaches. The results show that our approaches outperform the state-of-the-art ones in terms of prediction effectiveness and time performance.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1804
Author(s):  
Wentai Lei ◽  
Jiabin Luo ◽  
Feifei Hou ◽  
Long Xu ◽  
Ruiqing Wang ◽  
...  

Ground penetrating radar (GPR), as a non-invasive instrument, has been widely used in the civil field. The interpretation of GPR data plays a vital role in underground infrastructures to transfer raw data to the interested information, such as diameter. However, the diameter identification of objects in GPR B-scans is a tedious and labor-intensive task, which limits the further application in the field environment. The paper proposes a deep learning-based scheme to solve the issue. First, an adaptive target region detection (ATRD) algorithm is proposed to extract the regions from B-scans that contain hyperbolic signatures. Then, a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework is developed that integrates Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network to extract hyperbola region features. It transfers the task of diameter identification into a task of hyperbola region classification. Experimental results conducted on both simulated and field datasets demonstrate that the proposed scheme has a promising performance for diameter identification. The CNN-LSTM framework achieves an accuracy of 99.5% on simulated datasets and 92.5% on field datasets.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Binsheng He ◽  
Xichuan Liu ◽  
Shuai Hu ◽  
Kun Song ◽  
Taichang Gao

As a method that does not require additional cost, precipitation measurement by microwave links (MLs) has quickly attracted the attention of experts in meteorological, hydrological, and other related fields, of which wet-dry classification by MLs is one of the most important methods. Considering that existing commercial MLs are usually single-path, single-polarization, or low-frequency MLs, this paper uses the C-band ML and analyzes the variation in the receive signal level (RSL) of the C-band ML under the conditions of no rain, drizzle, light rain, and moderate rain. The RSL data are analyzed at different time scales by using long short-term memory (LSTM) network techniques, and then the method for distinguishing parts of the precipitation period by using the RSL from low-frequency MLs is proposed and validated. The results show that wet-dry classification is ideal. The accuracy on each day was higher than 60%, and some days had accuracies that were even higher than 98%. MLs below 10 GHz also had the potential to monitor ground rainfall. This study will broaden the range of available equipment for MLs for precipitation measurement.


Sign in / Sign up

Export Citation Format

Share Document