scholarly journals Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5762
Author(s):  
Syed Basit Ali Bukhari ◽  
Khawaja Khalid Mehmood ◽  
Abdul Wadood ◽  
Herie Park

This paper presents a new intelligent islanding detection scheme (IIDS) based on empirical wavelet transform (EWT) and long short-term memory (LSTM) network to identify islanding events in microgrids. The concept of EWT is extended to extract features from three-phase signals. First, the three-phase voltage signals sampled at the terminal of targeted distributed energy resource (DER) or point of common coupling (PCC) are decomposed into empirical modes/frequency subbands using EWT. Then, instantaneous amplitudes and instantaneous frequencies of the three-phases at different frequency subbands are combined, and various statistical features are calculated. Finally, the EWT-based features along with the three-phase voltage signals are input to the LSTM network to differentiate between non-islanding and islanding events. To assess the efficacy of the proposed IIDS, extensive simulations are performed on an IEC microgrid and an IEEE 34-node system. The simulation results verify the effectiveness of the proposed IIDS in terms of non-detection zone (NDZ), computational time, detection accuracy, and robustness against noisy measurement. Furthermore, comparisons with existing intelligent methods and different LSTM architectures demonstrate that the proposed IIDS offers higher reliability by significantly reducing the NDZ and stands robust against measurements uncertainty.

Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1804
Author(s):  
Wentai Lei ◽  
Jiabin Luo ◽  
Feifei Hou ◽  
Long Xu ◽  
Ruiqing Wang ◽  
...  

Ground penetrating radar (GPR), as a non-invasive instrument, has been widely used in the civil field. The interpretation of GPR data plays a vital role in underground infrastructures to transfer raw data to the interested information, such as diameter. However, the diameter identification of objects in GPR B-scans is a tedious and labor-intensive task, which limits the further application in the field environment. The paper proposes a deep learning-based scheme to solve the issue. First, an adaptive target region detection (ATRD) algorithm is proposed to extract the regions from B-scans that contain hyperbolic signatures. Then, a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework is developed that integrates Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network to extract hyperbola region features. It transfers the task of diameter identification into a task of hyperbola region classification. Experimental results conducted on both simulated and field datasets demonstrate that the proposed scheme has a promising performance for diameter identification. The CNN-LSTM framework achieves an accuracy of 99.5% on simulated datasets and 92.5% on field datasets.


Author(s):  
Sawsan Morkos Gharghory

An enhanced architecture of recurrent neural network based on Long Short-Term Memory (LSTM) is suggested in this paper for predicting the microclimate inside the greenhouse through its time series data. The microclimate inside the greenhouse largely affected by the external weather variations and it has a great impact on the greenhouse crops and its production. Therefore, it is a massive importance to predict the microclimate inside greenhouse as a preceding stage for accurate design of a control system that could fulfill the requirements of suitable environment for the plants and crop managing. The LSTM network is trained and tested by the temperatures and relative humidity data measured inside the greenhouse utilizing the mathematical greenhouse model with the outside weather data over 27 days. To evaluate the prediction accuracy of the suggested LSTM network, different measurements, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are calculated and compared to those of conventional networks in references. The simulation results of LSTM network for forecasting the temperature and relative humidity inside greenhouse outperform over those of the traditional methods. The prediction results of temperature and humidity inside greenhouse in terms of RMSE approximately are 0.16 and 0.62 and in terms of MAE are 0.11 and 0.4, respectively, for both of them.


2021 ◽  
Vol 1 (1) ◽  
pp. 199-218
Author(s):  
Mostofa Ahsan ◽  
Rahul Gomes ◽  
Md. Minhaz Chowdhury ◽  
Kendall E. Nygard

Machine learning algorithms are becoming very efficient in intrusion detection systems with their real time response and adaptive learning process. A robust machine learning model can be deployed for anomaly detection by using a comprehensive dataset with multiple attack types. Nowadays datasets contain many attributes. Such high dimensionality of datasets poses a significant challenge to information extraction in terms of time and space complexity. Moreover, having so many attributes may be a hindrance towards creation of a decision boundary due to noise in the dataset. Large scale data with redundant or insignificant features increases the computational time and often decreases goodness of fit which is a critical issue in cybersecurity. In this research, we have proposed and implemented an efficient feature selection algorithm to filter insignificant variables. Our proposed Dynamic Feature Selector (DFS) uses statistical analysis and feature importance tests to reduce model complexity and improve prediction accuracy. To evaluate DFS, we conducted experiments on two datasets used for cybersecurity research namely Network Security Laboratory (NSL-KDD) and University of New South Wales (UNSW-NB15). In the meta-learning stage, four algorithms were compared namely Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Units, Random Forest and a proposed Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) for accuracy estimation. For NSL-KDD, experiments revealed an increment in accuracy from 99.54% to 99.64% while reducing feature size of one-hot encoded features from 123 to 50. In UNSW-NB15 we observed an increase in accuracy from 90.98% to 92.46% while reducing feature size from 196 to 47. The proposed approach is thus able to achieve higher accuracy while significantly lowering number of features required for processing.


2021 ◽  
Vol 11 (15) ◽  
pp. 6824
Author(s):  
Jin-Su Kim ◽  
Min-Gu Kim ◽  
Sung-Bum Pan

Electromyogram (EMG) signals cannot be forged and have the advantage of being able to change the registered data as they are characterized by the waveform, which varies depending on the gesture. In this paper, a two-step biometrics method was proposed using EMG signals based on a convolutional neural network–long short-term memory (CNN-LSTM) network. After preprocessing of the EMG signals, the time domain features and LSTM network were used to examine whether the gesture matched, and single biometrics was performed if the gesture matched. In single biometrics, EMG signals were converted into a two-dimensional spectrogram, and training and classification were performed through the CNN-LSTM network. Data fusion of the gesture recognition and single biometrics was performed in the form of an AND. The experiment used Ninapro EMG signal data as the proposed two-step biometrics method, and the results showed 83.91% gesture recognition performance and 99.17% single biometrics performance. In addition, the false acceptance rate (FAR) was observed to have been reduced by 64.7% through data fusion.


Sign in / Sign up

Export Citation Format

Share Document