scholarly journals Modeling and Calibration for Dithering of MDRLG and Time-Delay of Accelerometer in SINS

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 278
Author(s):  
Jinlong Xing ◽  
Gongliu Yang ◽  
Tijing Cai

At present, the design and manufacturing technology of mechanically dithered ring laser gyroscope (MDRLG) have matured, the strapdown inertial navigation systems (SINS) with MDRLG have been widely used in military and business scope. When the MDRLG is working, high-frequency dithering is introduced, which will cause the size effect error of the accelerometer. The accelerometer signal has a time delay relative to the system, which will cause the accelerometer time delay error. In this article, in order to solve the above-mentioned problem: (1) we model the size effect error of the mechanically dithering of the MDRLG and perform an error analysis for the size effect error of the mechanically dithering of the MDRLG; (2) we model the time delay error of accelerometer and perform an error analysis for the time delay error of accelerometer; (3) we derive a continuous linear 43-D SINS error model considering the above-mentioned two error parameters and expand the temperature coefficients of accelerometers, inner lever arm error, outer lever arm error parameters to achieve high-precision calibration of SINS. We use the piecewise linear constant system (PWCS ) method during the calibration process to prove that all calibration parameters are observable. Finally, the SINS with MDRLG is used in laboratory conditions to test the validity of the calibration method.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6930
Author(s):  
Yuri V. Filatov ◽  
Petr A. Pavlov ◽  
Alexander A. Velikoseltsev ◽  
K. Ulrich Schreiber

The main application of a ring laser gyroscope is navigation. It is currently the most widely used device for strapdown inertial navigation systems. However, it is also applicable for high-precision angle metrology systems. This paper discusses the properties of a laser dynamic goniometer (LDG) based on the ring laser gyroscope and designed for the calibration of optical polygons and digital angle converters, and for the measurement of angles between external mirrors (theodolite operating mode). We consider the main sources of uncertainty, such as the ring laser gyro bias due to an external magnetic field and the instability caused by the velocity of rotation along with applicable methods of their compensation. The reversal method providing separation of uncertainties of the LDG and the calibrated angle converter is analyzed in detail. The simplified cross-calibration method is also considered. The results of calibration of optical encoders of various designs—with and without their own rotors (on-axis and off-axis in Euramet terminology)—are presented. Some results of the dynamic goniometer for the measurement of angles between external mirrors are presented. It is shown that the LDG in this mode of operation demonstrates better accuracy than modern theodolites and total stations.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2947
Author(s):  
Ming Hua ◽  
Kui Li ◽  
Yanhong Lv ◽  
Qi Wu

Generally, in order to ensure the reliability of Navigation system, vehicles are usually equipped with two or more sets of inertial navigation systems (INSs). Fusion of navigation measurement information from different sets of INSs can improve the accuracy of autonomous navigation effectively. However, due to the existence of misalignment angles, the coordinate axes of different systems are usually not in coincidence with each other absolutely, which would lead to serious problems when integrating the attitudes information. Therefore, it is necessary to precisely calibrate and compensate the misalignment angles between different systems. In this paper, a dynamic calibration method of misalignment angles between two systems was proposed. This method uses the speed and attitude information of two sets of INSs during the movement of the vehicle as measurements to dynamically calibrate the misalignment angles of two systems without additional information sources or other external measuring equipment, such as turntable. A mathematical model of misalignment angles between two INSs was established. The simulation experiment and the INSs vehicle experiments were conducted to verify the effectiveness of the method. The results show that the calibration accuracy of misalignment angles between the two sets of systems can reach to 1″ while using the proposed method.


1995 ◽  
Vol 34 (11) ◽  
pp. 4136-4139 ◽  
Author(s):  
Rein Luus ◽  
Xiaodong Zhang ◽  
Frank Hartig ◽  
Frerich J. Keil

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Vadym Avrutov

The scalar method of fault diagnosis systems of the inertial measurement unit (IMU) is described. All inertial navigation systems consist of such IMU. The scalar calibration method is a base of the scalar method for quality monitoring and diagnostics. In accordance with scalar calibration method algorithms of fault diagnosis systems are developed. As a result of quality monitoring algorithm verification is implemented in the working capacity monitoring of IMU. A failure element determination is based on diagnostics algorithm verification and after that the reason for such failure is cleared. The process of verifications consists of comparison of the calculated estimations of biases, scale factor errors, and misalignments angles of sensors to their data sheet certificate, kept in internal memory of computer. As a result of such comparison the conclusion for working capacity of each IMU sensor can be made and also the failure sensor can be determined.


2017 ◽  
Vol 28 (11) ◽  
pp. 115105 ◽  
Author(s):  
Tianxiao Song ◽  
Kui Li ◽  
Jie Sui ◽  
Zengjun Liu ◽  
Juncheng Liu

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 384 ◽  
Author(s):  
Zihui Wang ◽  
Xianghong Cheng ◽  
Jingjing Du

Single-axis rotational inertial navigation systems (single-axis RINSs) are widely used in high-accuracy navigation because of their ability to restrain the horizontal axis errors of the inertial measurement unit (IMU). The IMU errors, especially the biases, should be constant during each rotation cycle that is to be modulated and restrained. However, the temperature field, consisting of the environment temperature and the power heating of single-axis RINS, affects the IMU performance and changes the biases over time. To improve the precision of single-axis RINS, the change of IMU biases caused by the temperature should be calibrated accurately. The traditional thermal calibration model consists of the temperature and temperature change rate, which does not reflect the complex temperature field of single-axis RINS. This paper proposed a multiple regression method with a temperature gradient in the model, and in order to describe the complex temperature field thoroughly, a BP neural network method is proposed with consideration of the coupled items of the temperature variables. Experiments show that the proposed methods outperform the traditional calibration method. The navigation accuracy of single-axis RINS can be improved by up to 47.41% in lab conditions and 65.11% in the moving vehicle experiment, respectively.


Author(s):  
Vahid Ghasemzadeh ◽  
Mohammad M Arefi

The inertial navigation system is one of the most important and common methods of navigation. In this system, accelerometers and gyroscopes are used to measure linear accelerations and angular velocities, respectively. Accelerometers have simpler manufacture techniques, lower cost, and smaller volume and weight in comparison with gyroscopes. Therefore, in some application of navigation systems, non-gyro inertial navigation systems based on accelerometers are used. In this paper, an asymmetric structure of six accelerometers is proposed. Then dynamic relations of this structure are extracted. This structure and its relations can determine linear accelerations and angular velocities, completely. Moreover, the algorithm of inertial navigation in earth centered earth fixed (ECEF) frame is suggested. Error analysis as of the most important issues in inertial navigation is discussed. Thus, bias, misalignment, sensitivity, and noise of accelerometers are modeled appropriately. In addition, a symmetric structure of accelerometers is proposed and its equations are derived. Finally, the designed system, error model of accelerometers, and algorithm of inertial navigation in ECEF frame are simulated. The results of simulation show that the designed system has suitable accuracy and applications for short time navigation. Furthermore, results confirm that the proposed asymmetric structure requires less accelerometer in comparison with symmetric structure.


Sign in / Sign up

Export Citation Format

Share Document