scholarly journals On Linking of Task Analysis in the HRA Procedure: The Case of HRA in Offshore Drilling Activities

Safety ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 39 ◽  
Author(s):  
Geir-Ove Strand ◽  
Cecilia Haskins

Human reliability analysis (HRA) has become an increasingly important element in many industries for the purpose of risk management and major accident prevention; for example, recently to perform and maintain probabilistic risk assessments of offshore drilling activities, where human reliability plays a vital role. HRA experience studies, however, continue to warn about potential serious quality assurance issues associated with HRA methods, such as too much variability in comparable analysis results between analysts. A literature review highlights that this lack of HRA consistency can be traced in part to the HRA procedure and a lack of explicit application of task analysis relevant to a wide set of activity task requirements. As such, the need for early identification of and consistent focus on important human performance factors among analysts may suffer, and consequently, so does the ability to achieve continuous enhancements of the safety level related to offshore drilling activities. In this article, we propose a method that clarifies a drilling HRA procedure. More precisely, this article presents a novel method for the explicit integration of a generic task analysis framework into the probabilistic basis of a drilling HRA method. The method is developed and demonstrated under specific considerations of multidisciplinary task and well safety analysis, using well accident data, an HRA causal model, and principles of barrier management in offshore regulations to secure an acceptable risk level in the activities from its application.

Author(s):  
Harold S. Blackman ◽  
James C. Byers

Human reliability analysis (HRA) assesses the safety and risk significance of human tasks. This paper describes the development and testing of a behaviorally based human reliability analysis method. A general criticism of HRA methods is the inability to tie HRA methods back to first principles in human behavior. The method described here, developed for the accident sequence precursor (ASP) program of the U. S. Nuclear Regulatory Commission (NRC), begins by first describing an information processing model of human behavior, and then using it to define a comprehensive list of factors that influence human performance. These psychological factors are then distilled into the practical and operational factors more commonly identified in nuclear power plant operation. Appropriate adjustments for level of detail are then made to the factors and a further model developed to evaluate the effect of dependency between human actions. The application of the method to the ASP models for two nuclear power plants is discussed.


Author(s):  
Katrina M Groth ◽  
Ali Mosleh

Within the probabilistic risk assessment community, there is a widely acknowledged need to improve the scientific basis of human reliability analysis (HRA). This has resulted in a number of independent research efforts to gather empirical data to validate HRA methods and a number of independent research efforts to improve theoretical models of human performance used in HRA. This paper introduces a methodology for carefully combining multiple sources of empirical data with validated theoretical models to enhance both qualitative and quantitative HRA applications. The methodology uses a comprehensive set of performance influencing factors to combine data from different sources. Further, the paper describes how to use data to gather insights into the relationships among performance influencing factors and to build a quantitative HRA causal model.  To illustrate how the methodology is applied, we introduce the Bayesian network model that resulted from applying the methodology to two sources of human performance data from nuclear power plant operations. The proposed model is introduced to demonstrate how to develop causal insights from HRA data and how to incorporate these insights into a quantitative HRA model. The methodology in this paper provides a path forward for carefully incorporating emerging sources of human performance data into an improved HRA method. The proposed model is a starting point for the next generation of data-informed, theoretically-validated HRA methods.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 470-477
Author(s):  
M. Farcasiu ◽  
C. Constantinescu

Abstract This paper provides the empirical basis to support predictions of the Human Factor Engineering (HFE) influences in Human Reliability Analysis (HRA). A few methods were analyzed to identify HFE concepts in approaches of Performance Shaping Factors (PSFs): Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR) and Cognitive Reliability and Error Analysis Method (CREAM), Success Likelihood Index Method (SLIM) Plant Analysis Risk – Human Reliability Analysis (SPAR-H), A Technique for Human Error Rate Prediction (ATHEANA) and Man-Machine-Organization System Analysis (MMOSA). Also, in order to identify other necessary PSFs in HFE, an additional investigation process of human performance (HPIP) in event occurrences was used. Thus, the human error probability could be reduced and its evaluating can give out the information for error detection and recovery. The HFE analysis model developed using BHEP values (maximum and pessimistic) is based on the simplifying assumption that all specific circumstances of HFE characteristics are equal in importance and have the same value of influence on human performance. This model is incorporated into the PSA through the HRA methodology. Finally, a clarification of the relationships between task analysis and the HFE is performed, ie between potential human errors and design requirements.


Author(s):  
Pengfei Gu ◽  
Zhifang Wang ◽  
Jianbo Zhang

Recently Human Reliability Analysis (HRA) is becoming more important to the safety of nuclear power plant (NPP). As the reliability of the NPP equipments have been increased more higher, HRA should be developed in order to guarantee the better safety of NPP. By the collection of human performance about operators in main control room of NPP, especially in accident situation, it is very important to enhance the human reliability. This paper chooses Loss of Coolant Accident (LOCA) and Steam Generator Tube Rupture (SGTR) as the initiating events, and base on this, some loss of other equipment or system have been added. Then the process that the operators deal with the accidents has been recorded in the accident situation in order to get reasonable human performance data. After we analyzed all of these video by some tools such as eye tracking tool, some items have been found which are very important to the human reliability such as training level, operation task, human-machine interface, surrounding, team work, etc. According to the analysis of the human performance result, we have evaluated the computerized human machine interface. As a result, it also could be benefit to improve the design of NPP, specially the design of main control room.


Author(s):  
Danilo T. M. P. Abreu ◽  
Marcos C. Maturana ◽  
Marcelo R. Martins ◽  
Siegberto R. Schenk

Abstract During a ship life cycle, one of the most critical phases in terms of safety refers to harbor maneuvers, which take place in restricted and congested waters, leading to higher collision and grounding risks in comparison to open sea navigation. In this scenario, a single accident may stop the harbor’s traffic as well as incur into patrimonial damage, environmental pollution, human casualties and reputation losses. In order to support the vessel’s captain during the maneuver, local experienced maritime pilots stay on board coordinating the ship navigation while in restricted waters. Because of their shorter relative duration, harbor maneuvers accidents are more probable to occur due to human errors — reinforced by the inherent surrounding difficulties —, rather than machinery failures, for instance. The human errors are object of study of the human reliability analysis (HRA). Aiming to assess the main factors contributing to human errors in pilot-assisted harbor ship maneuvers, this work proposes a Bayesian network model for HRA, supported by a prospective human performance model for quantification. Similar works focus mainly on open sea navigation and collision accidents, which do not reflect the strict conditions found on port areas. Additionally, most of the models are highly dependent on expert’s opinion for quantification. Therefore, the novelty of this work resides into two aspects: a) incorporation of harbor specific conditions for maritime navigation HRA, including the performance of ship’s crew and maritime pilots; and b) the use of a prospective human performance model as an alternative to expert’s opinion for quantification purposes. To illustrate the usage of the proposed methodology, this paper presents an analysis of the route keeping task along waterways, starting from the quantification of human error probabilities (HEP) and including the ranking of the main external factors that contribute to the HEP.


Author(s):  
Mashrura Musharraf ◽  
Allison Moyle ◽  
Faisal Khan ◽  
Brian Veitch

Data scarcity has always been a significant challenge in the domain of human reliability analysis (HRA). The advancement of simulation technologies provides opportunities to collect human performance data that can facilitate both the development and validation paradigms of HRA. The potential of simulator data to improve HRA can be tapped through the use of advanced machine learning tools like Bayesian methods. Except for Bayesian networks, Bayesian methods have not been widely used in the HRA community. This paper uses a Bayesian method to enhance human error probability (HEP) assessment in offshore emergency situations using data generated in a simulator. Assessment begins by using constrained noninformative priors to define the HEPs in emergency situations. An experiment is then conducted in a simulator to collect human performance data in a set of emergency scenarios. Data collected during the experiment are used to update the priors and obtain informed posteriors. Use of the informed posteriors enables better understanding of the performance, and a more reliable and objective assessment of human reliability, compared to traditional assessment using expert judgment.


2021 ◽  
Vol 5 (1) ◽  
pp. 66-74
Author(s):  
Ratna Ayu Ratriwardhani ◽  
Friska Ayu

Based on data from the Health and Safety Executive, it can be concluded that as many as 90% of accidents are caused by human error. Coal mining is an industry that has a high risk of work accidents. If the mining process is not following procedures, then lives will be at stake. Human error probability assessment needs to be done because most accidents that occur in coal mining are caused by human error. HRA (Human Reliability Analysis) is part of the risk assessment process which aims to calculate the HEP value. HRA has been used in many studies to assess the risks involved in large, complex, and dangerous systems. The Success Likelihood Index Method (SLIM) is a method of analysis for human reliability. Prevention and control of human error need to be done at every stage of work. SLIM can analyze HEP at each stage of the work. SLIM aims to obtain a HEP value. To get the HEP value, we must first find the SLI (Success Likelihood Index) value. Finding the SLI value comes from a weighting questionnaire and PSF (Performance Shaping Factor) assessment that has been filled in by an expert judgment. After the HEP value is obtained, it can be seen which jobs fall into the safe risk level and which the risk cannot be accepted. Furthermore, risk reduction is carried out by making a task analysis of jobs that have a high hazard risk. Based on the research results, it can be seen the factors that cause a human error, namely unsafe conditions, unsafe actions, personal factors, and job factors. While the task that has the highest HEP value is on task 4, which is equal to 0,006932. The task with the smallest HEP value is task 1, amounting to 0,006478.


Sign in / Sign up

Export Citation Format

Share Document