scholarly journals Correlation between Cyclosporine Blood Levels and Area under Blood Concentration Time Curve in Iraqi Bone Marrow Transplant Patients Treated with Neoral® Oral Solution

2020 ◽  
Vol 88 (1) ◽  
pp. 12
Author(s):  
Hassan M. Abass ◽  
Kawther F. Al-Tamimi ◽  
Duaa J. Al-Tamimi ◽  
Jaafar J. Ibraheem

Cyclosporine is a potent immunosuppressive drug. It has a narrow therapeutic index, and therefore the measurement of cyclosporine’s blood concentration is essential to obtain optimal therapy. Measurement of the area under the blood concentration-time curve (AUC) is reflective of total drug exposure. However, for organ transplant patients, the measurement of AUC involves many problems and difficulties. Thus, it is more clinically acceptable to use a single blood sample as a surrogate index of total drug exposure. Fifty-four adults bone marrow transplant Iraqi patients were given cyclosporine every 12 h as prophylaxis using Neoral® oral solution. Steady-state blood concentrations were monitored for each patient at zero time and then at 1, 2, 3, 4, 6, 8, 10, and at 12 h post-dosing. Cyclosporine blood levels were determined by using AXSYM automated immuno-analyzer which is a fluorescence polarization immunoassay (FPIA). The present investigation demonstrated the best correlation between C2 and the corresponding AUC0–4h and AUC0–12h compared to other concentrations. After two months of cyclosporine therapy, no unexpected biochemical changes and adverse effects were registered. It is concluded from this study that a single blood sample obtained at 2 h post-dosing (C2) and possibly at 3 h post dosing (C3) are ideal surrogate indexes for reflecting total drug exposure, and therefore may be used in clinical practice for predicting therapeutic and toxic effects of cyclosporine.

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S422-S423 ◽  
Author(s):  
Brian D VanScoy ◽  
Elizabeth A Lakota ◽  
Sujata M Bhavnani ◽  
Greg Giesel ◽  
Ana I Carranco ◽  
...  

Abstract Background ME1100 (arbekacin inhalational solution) is an aminoglycoside in clinical development for the treatment of patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP and VABP, respectively). Due to the increase in resistance of Staphylococcus aureus and Pseudomonas aeruginosa to many antimicrobial agents, it is important to understand the relationships between amplification of drug resistance and each of drug exposure and therapy duration. The objective of the studies described herein was to utilize the HFIM to determine the arbekacin exposure after ME1100 administration required to prevent the emergence of drug-resistant subpopulations. Methods Duplicate 10-day HFIM assays were completed in which arbekacin total-drug epithelial lining fluid (ELF) concentration–time profiles following inhalational administration of ME1100 every 12 hours were simulated. Four isolates, two methicillin-resistant S. aureus (Arbekacin MIC = 1 mg/L), and two P. aeruginosa (Arbekacin MIC = 4 mg/L), were exposed to total-drug ELF area under the concentration–time curve (AUC) values ranging from 217 to 25,053 mg hour/L, which were simulated using two different half-lives, 1 hour (α) and 6.93 hours (β). The initial bacterial burden was 1.0 × 108 CFU/mL. Samples were collected for enumeration of both the total and drug-resistant bacterial burdens and evaluation of pharmacokinetic samples using LC/MS–MS. Results Total-drug ELF AUC:MIC ratios required to prevent amplification of MRSA and P. aeruginosa resistance in the HFIM over 10 days were 1,512 and 2,942, respectively. The higher AUC:MIC ratio required to prevent resistance for P. aeruginosa was most likely due to the presence of a small colony variant population. The relationship between total-drug ELF AUC:MIC ratio and change in log10 CFU from baseline of the drug-resistant sub-populations found on agar plates on Day 10 took the form of an inverted-U for three pathogens and a step-function for one (Figure 1). Conclusion These data, which address the goal of considering arbekacin exposures that prevent the development of on-therapy resistance in a clinical setting, will help to provide guidance for future ME1100 dose selection for the treatment of patients with HABP/VABP. Disclosures B. D. VanScoy, Meiji Seika Pharma Co. Ltd.: Research Contractor, Research support. E. A. Lakota, Meiji Seika Pharma Co. Ltd.: Research Contractor, Research support. S. M. Bhavnani, Meiji Seika Pharma Co. Ltd.: Research Contractor, Research support. G. Giesel, Meiji Seika Pharma Co. Ltd.: Research Contractor, Research support. A. I. Carranco, Meiji Seika Pharma Co. Ltd.: Research Contractor, Research support. Y. Nagira, Meiji Seika Pharma Co. Ltd.: Employee, Salary. S. Ouchi, Meiji Seika Pharma Co. Ltd.: Employee, Salary. K. Kondo, Meiji Seika Pharma Co. Ltd.: Employee, Salary. P. G. Ambrose, Meiji Seika Pharma Co. Ltd.: Research Contractor, Research support.


2009 ◽  
Vol 54 (2) ◽  
pp. 852-859 ◽  
Author(s):  
H. J. Johnson ◽  
K. Han ◽  
B. Capitano ◽  
D. Blisard ◽  
S. Husain ◽  
...  

ABSTRACT The objective of this study was to evaluate the pharmacokinetics of voriconazole and the potential correlations between pharmacokinetic parameters and patient variables in liver transplant patients on a fixed-dose prophylactic regimen. Multiple blood samples were collected within one dosing interval from 15 patients who were initiated on a prophylactic regimen of voriconazole at 200 mg enterally (tablets) twice daily starting immediately posttransplant. Voriconazole plasma concentrations were measured using high-pressure liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis was performed to estimate pharmacokinetic parameters. The mean apparent systemic clearance over bioavailability (CL/F), apparent steady-state volume of distribution over bioavailability (V ss/F), and half-life (t 1/2) were 5.8 ± 5.5 liters/h, 94.5 ± 54.9 liters, and 15.7 ± 7.0 h, respectively. There was a good correlation between the area under the concentration-time curve from 0 h to infinity (AUC0-∞) and trough voriconazole plasma concentrations. t 1/2, maximum drug concentration in plasma (C max), trough level, AUC0-∞, area under the first moment of the concentration-time curve from 0 h to infinity (AUMC0-∞), and mean residence time from 0 h to infinity (MRT0-∞) were significantly correlated with postoperative time. t 1/2, λ, AUC0-∞, and CL/F were significantly correlated with indices of liver function (aspartate transaminase [AST], total bilirubin, and international normalized ratio [INR]). The C max, last concentration in plasma at 12 h (C last), AUMC0-∞, and MRT0-∞ were significantly lower in the presence of deficient CYP2C19*2 alleles. Donor characteristics had no significant correlation with any of the pharmacokinetic parameters estimated. A fixed dosing regimen of voriconazole results in a highly variable exposure of voriconazole in liver transplant patients. Given that trough voriconazole concentration is a good measure of drug exposure (AUC), the voriconazole dose can be individualized based on trough concentration measurements in liver transplant patients.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Charalampos Antachopoulos ◽  
Stavroula Ilia ◽  
Paschalis Kadiltzoglou ◽  
Eirini Baira ◽  
Aristides Dokoumetzidis ◽  
...  

ABSTRACT The pharmacokinetics of daptomycin (10 mg/kg once daily) was studied in 4 critically ill pediatric patients aged 8 to 14 yrs. The area under the concentration-time curve from time zero to infinity (AUC 0–∞ ) of plasma concentrations on day 1 ranged between 123.8 to 663.9 μg · h/ml, with lower values observed in septic and burn patients; clearance ranged from 15.1 to 80.7 ml/h/kg. Higher-than-recommended doses of daptomycin may be needed in septic children to ensure optimal drug exposure. Interpatient variability may suggest a role for therapeutic drug monitoring.


2016 ◽  
Vol 60 (8) ◽  
pp. 5072-5075 ◽  
Author(s):  
Abrar K. Thabit ◽  
Marguerite L. Monogue ◽  
David P. Nicolau

ABSTRACTWe assessed the pharmacokinetic profile of eravacycline, a novel antibiotic of the tetracycline class, and determined the dose in an immunocompetent murine thigh infection model that would provide free-drug exposure similar to that observed in humans after the administration of 1 mg/kg intravenously (i.v.) every 12 h (q12h). Eravacycline demonstrated a nonlinear protein-binding profile. The 2.5-mg/kg i.v. q12h dose in mice resulted in an area under the concentration-time curve for the free, unbound fraction of the drug of 1.64 mg · h/liter, which closely resembles the human exposure level.


2017 ◽  
Vol 28 (1) ◽  
pp. 85-92
Author(s):  
Christoph P. Hornik ◽  
Nikolas J. Onufrak ◽  
P. Brian Smith ◽  
Michael Cohen-Wolkowiez ◽  
Matthew M. Laughon ◽  
...  

AbstractBackgroundThe relationship between sildenafil dosing, exposure, and systemic hypotension in infants is incompletely understood.ObjectivesThe aim of this study was to characterise the relationship between predicted sildenafil exposure and hypotension in hospitalised infants.MethodsWe extracted information on sildenafil dosing and clinical characteristics from electronic health records of 348 neonatal ICUs from 1997 to 2013, and we predicted drug exposure using a population pharmacokinetic model.ResultsWe identified 232 infants receiving sildenafil at a median dose of 3.2 mg/kg/day (2.0, 6.0). The median steady-state area under the concentration–time curve over 24 hours (AUC24,SS) and maximum concentration of sildenafil (Cmax,SS,SIL) were 712 ng×hour/ml (401, 1561) and 129 ng/ml (69, 293), respectively. Systemic hypotension occurred in 9% of the cohort. In multivariable analysis, neither dosing nor exposure were associated with systemic hypotension: odds ratio=0.96 (95% confidence interval: 0.81, 1.14) for sildenafil dose; 0.87 (0.59, 1.28) for AUC24,SS; 1.19 (0.78, 1.82) for Cmax,SS,SIL.ConclusionsWe found no association between sildenafil dosing or exposure with systemic hypotension. Continued assessment of sildenafil’s safety profile in infants is warranted.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Brian D. VanScoy ◽  
Elizabeth A. Lakota ◽  
Haley Conde ◽  
Jennifer McCauley ◽  
Lawrence Friedrich ◽  
...  

ABSTRACT Omadacycline is a novel aminomethylcycline with activity against Gram-positive and -negative organisms, including Haemophilus influenzae, which is one of the leading causes of community-acquired bacterial pneumonia (CABP). The evaluation of antimicrobial agents against H. influenzae using standard murine infection models is challenging due to the low pathogenicity of this species in mice. Therefore, 24-h dose-ranging studies using a one-compartment in vitro infection model were undertaken with the goal of characterizing the magnitude of the ratio of the area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio) associated with efficacy for a panel of five H. influenzae isolates. These five isolates, for which MIC values were 1 or 2 mg/liter, were exposed to omadacycline total-drug epithelial lining fluid (ELF) concentration-time profiles based on those observed in healthy volunteers following intravenous omadacycline administration. Relationships between change in log10 CFU/ml from baseline at 24 h and the total-drug ELF AUC/MIC ratios for each isolate and for the isolates pooled were evaluated using Hill-type models and nonlinear least-squares regression. As evidenced by the high coefficients of determination (r2) of 0.88 to 0.98, total-drug ELF AUC/MIC ratio described the data well for each isolate and the isolates pooled. The median total-drug ELF AUC/MIC ratios associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 6.91, 8.91, and 11.1, respectively. These data were useful to support the omadacycline dosing regimens selected for the treatment of patients with CABP, as well as susceptibility breakpoints for H. influenzae.


2019 ◽  
Vol 22 ◽  
pp. 407-417 ◽  
Author(s):  
Masaki Tanaka ◽  
Masafumi Kikuchi ◽  
Shinya Takasaki ◽  
Tensei Hirasawa ◽  
Kensuke Sigeta ◽  
...  

Purpose: The dose of mycophenolate mofetil (MMF) used to prevent rejection after lung transplantation is often adjusted based on the 12-hour area under the concentration-time curve (AUC0-12) of mycophenolic acid (MPA). A limited sampling strategy (LSS) is useful to define the pharmacokinetic (PK) profiles of MPA and mycophenolic acid acyl glucuronide (AcMPAG). Therefore, this study aimed to design a LSS based on multiple linear regression for estimating the AUC0-12 of MPA and AcMPAG at the minimum blood sampling points in Japanese lung transplant patients with concomitant tacrolimus. Methods: Forty-five lung transplantation recipients were enrolled in a PK study of MPA, mycophenolic acid glucuronide (MPAG), and AcMPAG. The plasma MPA, MPAG, and AcMPAG concentrations were determined just before and at 0.5, 1, 2, 4, 8, and 12 hours after dosing. The AUC0-12 of MPA and AcMPAG was calculated using a linear trapezoidal rule from the plasma concentration of each blood sampling time. LSS was used to develop models for estimated AUC in the model group (n = 23) and was evaluated in the validation group (n = 22). Results: The best three time-point equation was 4.04 + 1.64·C1 + 3.08·C4 + 5.17·C8 for MPA, and -0.13 + 3.01·C1 + 3.51·C4 + 5.74·C8 for AcMPAG. The prediction errors (PE) and the absolute prediction errors (APE) were within the clinically acceptable ± 5% and 15% range, respectively (MPA: PE = 2.00%, APE = 11.66%, AcMPAG: PE = 0.98%, APE = 14.69%). The percentage of estimated AUC0-12 within ± 15% of the observed AUC0-12 was 77.27% for MPA and 81.82% for AcMPAG. Conclusion: LSS using three time-point (C1, C4, and C8) provides the most reliable and accurate simultaneous estimation of the AUC0-12 of MPA and AcMPAG in Japanese lung transplant patients.


2014 ◽  
Vol 58 (11) ◽  
pp. 6767-6772 ◽  
Author(s):  
Russell E. Lewis ◽  
Nathaniel D. Albert ◽  
Dimitrios P. Kontoyiannis

ABSTRACTWe used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice withAspergillus fumigatusstrain 293 (posaconazole MIC, 0.5 mg/liter) orRhizopus oryzaestrain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar forA. fumigatusandR. oryzaewhen indexed to pathogen MICs.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Sujata M. Bhavnani ◽  
Jeffrey P. Hammel ◽  
Elizabeth A. Lakota ◽  
M. Courtney Safir ◽  
Brian D. VanScoy ◽  
...  

ABSTRACT ME1100 (arbekacin inhalation solution) is an inhaled aminoglycoside that is being developed to treat patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP and VABP, respectively). Pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses were undertaken to evaluate ME1100 regimens for the treatment of patients with HABP/VABP. The data used included a population pharmacokinetic (PPK) 4-compartment model with 1st-order elimination, nonclinical PK-PD targets from one-compartment in vitro and/or in vivo infection models, and in vitro surveillance data. Using the PPK model, total-drug epithelial lining fluid (ELF) concentration-time profiles were generated for simulated patients with varying creatinine clearance (CLcr) (ml/min/1.73 m2) values. Percent probabilities of PK-PD target attainment by MIC were determined based on the ratio of total-drug ELF area under the concentration-time curve (AUC) to MIC (AUC/MIC ratio) targets associated with 1- and 2-log10 CFU reductions from baseline for Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Percent probabilities of PK­PD target attainment based on PK-PD targets for a 1-log10 CFU reduction from baseline at MIC values above the MIC90 value for K. pneumoniae (8 μg/ml), P. aeruginosa (4 μg/ml), and S. aureus (0.5 μg/ml) were ≥99.8% for ME1100 600 mg twice daily (BID) in simulated patients with CLcr values >80 to ≤120 ml/min/1.73 m2. ME1100 600 mg BID, 450 mg BID, and 600 mg once daily in simulated patients with CLcr values >50 to ≤80, >30 to ≤50, and 0 to ≤30 ml/min/1.73 m2, respectively, provided arbekacin exposures that best matched those for 600 mg BID in simulated patients with normal renal function. These data provide support for ME1100 as a treatment for patients with HABP/VABP.


2001 ◽  
Vol 45 (7) ◽  
pp. 2115-2118 ◽  
Author(s):  
G. L. Drusano ◽  
S. L. Preston ◽  
D. Smee ◽  
K. Bush ◽  
K. Bailey ◽  
...  

ABSTRACT We examined RWJ-270201 in a lethal model of influenza in BALB/c mice. The aim was to delineate the pharmacodynamically linked variable for the drug. Challenge was performed with influenza virus A/Shongdong/09/93 (H3N2). Treatment was administered by gavage. Five doses (1 to 10 mg/kg of body weight) and three schedules (every 24, 12, and 8 h) were evaluated with 10 mice per group. There were 39 placebo-treated mice. Drug exposure was evaluated for infected mice. Exposures were calculated after population modeling of all the plasma concentration-time data simulataneously using the NPEM3 program. Evaluation of dose and schedule with Kaplan-Meier analysis and Cox proportional hazards modeling demonstrated that schedule offered no explanatory power relative to dose alone. Evaluation of peak concentration, trough concentration, and area under the concentration-time curve (AUC) by the same methods revealed that AUC was the dynamically linked variable. Again, schedule offered no further explanatory power when included in the model with AUC. This indicates that AUC is the linked variable and that the anti-influenza effect of RWJ-270201 is independent of schedule. We conclude that once-daily dosing of RWJ-270201 should be evaluated in clinical trials of influenza therapy.


Sign in / Sign up

Export Citation Format

Share Document