scholarly journals Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis

2018 ◽  
Vol 10 (8) ◽  
pp. 2664
Author(s):  
Daehoon Kim ◽  
Seokhoon Oh

We prepared bentonite-based grouts for use in the construction of vertical ground heat exchangers (GHEs) using various proportions of silica sand as an additive, and measured the thermal conductivity (TC) and specific heat capacity (SHC) of the grouts under saturated conditions. Furthermore, we performed numerical simulations using the measured thermal properties to investigate the effects of grout-SHCs, the length of the high-density polyethylene (HDPE) pipe, the velocity of the working fluid, and the operation time and off-time during intermittent operation on performance. Experimentally, the grout TCs and SHCs were in the ranges 0.728–1.127 W/(mK) and 2519–3743 J/(kgK), respectively. As the proportions of bentonite and silica sand increased, the TC rose and the SHC fell. Simulation showed that, during intermittent operation, not only a high grout TC but also a high SHC improved GHE performance. Also, during both continuous and intermittent operation, GHE performance improved as the working fluid velocity increased, and there was a critical working fluid velocity that greatly affected the performance of the vertical GHE, regardless of operation mode, high-density polyethylene (HDPE) pipe length, or grout thermal properties; this value was 0.3 m/s. Finally, during intermittent operation, depending on the operation time and off-time, critical periods were evident when the ground temperature had been almost completely restored and any beneficial effect of intermittent operation had almost disappeared.

Author(s):  
Muhammad Faisal Javed Butt ◽  
Michael P. Paidoussis ◽  
Meyer Nahon

Pipes aspirating fluid have applications in the filling and recovery processes for underground caverns — large subterranean cavities used to store hydrocarbons, such as natural gas and oil. This paper deals with the dynamics of a vertical cantilevered flexible pipe, immersed in fluid. Fluid is aspirated from its bottom free end up to the fixed upper end. In this study, the working fluid is assumed to be water. An existing analytical model is used to predict the dynamical behaviour of the aspirating pipe. This model is then discretized with Galerkin’s method, using Euler-Bernoulli eigen-functions for cantilevered beam as comparison functions. Once solved, the model results show a unique kind of flutter comprising three regions, denoted regions 01–03. These regions are delineated by two critical flow velocities, Ucf1 and Ucf2. In addition, two frequencies of oscillation, f1 and f2, are found to characterize the aforementioned flutter. The dominant frequency of oscillation changes from f1 to f2 as the flow velocity is increased from approximately 3 to 6 m/s — a frequency exchange phenomenon observed and reported here for the first time for this system. The analytical/numerical study was followed by a corresponding experimental study. Experiments were performed on a flexible (Silastic) pipe that was completely submerged in water. The behaviour observed experimentally was similar to the numerical study, as the aspirating fluid velocity was increased from zero to 7 m/s.


Author(s):  
Timothy M. Adams ◽  
Shawn Nickholds ◽  
Douglas Munson ◽  
Jeffery Andrasik

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel piping with high density polyethylene (HDPE) is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs that carbon steel pipe and HDPE pipe has a much greater resistance to corrosion. The ASME Boiler and Pressure Vessel Code, Section III, Division 1 currently permits the use of non-metallic piping in buried safety Class 3 piping systems. Additionally, HDPE pipe has been successfully used in non-safety-related systems in nuclear power facilities and is commonly used in other industries such as water mains and natural gas pipelines. This report presents the results of updated fatigue testing of PE 4710 cell classification 445574C pipe compliant with the specific Code requirements. This information was developed to support and provide a strong technical basis for material properties of HDPE pipe for use in ASME Boiler and Pressure Vessel Code, Section III New Construction and Section XI repair or replacement activities. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process and waste water plants via its possible use in the B31 series piping codes. The report provides fatigue data in the form of Code S-N curves for fusion butt joints in PE 4710 cell classification 445574C HDPE pipe.


1970 ◽  
Vol 92 (3) ◽  
pp. 301-309 ◽  
Author(s):  
G. Angelino ◽  
E. Macchi

The computation of power cycles employing carbon dioxide as working fluid and extending down to the critical region requires the knowledge of the thermodynamic properties of CO2 within a wide range of pressures and temperatures. Available data are recognized to be insufficient or insufficiently accurate chiefly in the vicinity of the critical dome. Newly published density and specific heat measurements are employed to compute thermodynamic functions at temperatures between 0 and 50 deg C, where the need of better data is more urgent. Methods for the computation of thermal properties from density measurement in the low and in the high temperature range are presented and discussed. Results are reported of the computation of entropy and enthalpy of CO2 in the range 150–750 deg C and 40–600 atm. The probable precision of the tables is inferred from an error analysis based on the generation, by means of a computer program of a set of pseudoexperimental points which, treated as actual measurements, yield useful information about the accuracy of the calculation procedure.


Author(s):  
Ayako Funabiki ◽  
Taisei Yabuki ◽  
Masahito Oguma

A ground source heat reference map (GSHRM) shows the minimum necessary thermal performance of the ground heat exchanger (GHE) of a ground source heat pump (GSHP) system. Thermal performance depends on thermal properties of the ground, the ground temperature profile, heat advection by groundwater flow, and the GHE operating pattern. This study modeled optimum heating and cooling modes for a GSHRM. First, continuous and intermittent operation modes were compared, and a standard operation time was defined. In a standard household GSHP system, the quantity of heat transferred from the ground depends on household energy demand, which is relatively constant. Once the demand is known, an operation mode is selected that can meet it. Continuous operation increased the total amount of heat exchanged over a period of time but lowered the heat flux at the GHE, whereas intermittent operation with relatively long stopped periods decreased the total amount of heat but did not greatly decrease the heat flux at the GHE. Second, energy-saving efficiency and cost factors were compared among intermittent operation modes. Operation costs consist of the electrical energy supplied to the heat and circulation pumps. At a given operation time, the energy supplied to the heat pump depends on its coefficient of performance (COP), whereas that supplied to the circulation pump depends on its pressure loss, hence on the GHE length. A long GHE has a higher initial cost. Thus, the optimum heating pattern must consider the configuration of the GSHP system, including energy-saving efficiency and cost factors.


Sign in / Sign up

Export Citation Format

Share Document