scholarly journals Influence of Glycidyl Methacrylate Grafting on the Mechanical, Water Absorption, and Thermal Properties of Recycled High-Density Polyethylene/Rubber Seed Shell Particle Composites

BioResources ◽  
2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaimeng Xu ◽  
Zhifeng Zheng ◽  
Suyong Huang ◽  
Taian Chen ◽  
Zhengjie Tang
2015 ◽  
Vol 1129 ◽  
pp. 39-48
Author(s):  
S.F. Wong ◽  
S.K. Ting ◽  
M. Lin ◽  
M. Shamini ◽  
B.K. Tay

This paper reports a study on novel geopolymers, focusing on chemically bonded composites, by incorporating wollastonite and recycled mixed plastics. Magnesium oxide and monopotassium phosphate were used as binders; while the recycled mixed plastics consisted of high-density polyethylene and polystyrene at different volume ratios. The effects of molar ratio (magnesium-to-phosphorus ratio), wollastonite-to-binder ratio and recycled mixed plastics content were investigated. The performance of geopolymers was evaluated based on their setting time and water absorption, compressive and flexural strengths as well as thermal properties.


Author(s):  
Abdulmumin Adebisi ◽  
Tajudeen Mojisola ◽  
Umar Shehu ◽  
Muhammed Sani Adam ◽  
Yusuf Abdulaziz

In-situ synthesis of high-density polyethylene (HDPE) reinforced groundnut shell particulate (GSP) composite with treated GSP within the range of 10-30 wt% at 10 wt% has been achieved. The adopted technique used in the production of the composite is melt mixing and compounding using two roll mills with a compression moulding machine. Properties such as hardness, tensile strength, impact energy and water absorption analysis were examined. The result revealed that addition of GSP increases the hardness value from 22.3 to 87 Hv. However, the tensile strength progressively decreased as the GSP increases in the HDPE. This trend arises due to the interaction between neighbouring reinforced particulate which appears to influence the matrix flow, thereby inducing embrittlement of the polymer matrix. It was also observed that water absorption rate steadily increased with an increase in the exposure time and the absorbed amount of water increases by increasing the wt% of the GSP. Analysing the obtained results, it was concluded that there were improvements in the hardness, tensile strength, impact energy and water absorption properties of the HDPE-GSP polymer composite when compared to unreinforced HDPE. On these premises, GSP was found as a promising reinforcement which can positively influence the HDPE properties of modern composites.


2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


Sign in / Sign up

Export Citation Format

Share Document