scholarly journals A Pilot Plant Study on the Autoclaving of Food Wastes for Resource Recovery and Reutilization

2018 ◽  
Vol 10 (10) ◽  
pp. 3566
Author(s):  
Chia-Chi Chang ◽  
Yen-Hau Chen ◽  
Yi-Shiou Lin ◽  
Zang-Sei Hung ◽  
Min-Hao Yuan ◽  
...  

Autoclaving of food wastes (FW) for the resource recovery and reutilization was studied using the pilot plant scale. Experiments were conducted at various temperatures of 408, 428, and 438 K and times of 15 and 60 min. The in-filled steam to the autoclave was supplied by the incineration plant with a gauge pressure of 7 kg/cm2 and a temperature of 443 K or above. The results obtained from the experiments show that the less energy- and time-consuming autoclaving conditions (408 K and 15 min, denoted as Case A408-15) are effective. Comparisons of the properties and characteristics of autoclaved FW (FWA) of Case A408-15 with those of FW are made. The wet bulk volume and wet bulk density of FW A are dramatically reduced to 15.64% and increased to 313.37% relative to those of FW, respectively. This makes the subsequent processing and reuse for FWA more convenient than FW. The autoclaving results in an increase of carbon content and a decrease of nitrogen content, and thus an increase of the C/N ratio of FWA. The contents of sulfur, hemi-cellulose, and cellulose of FWA are also reduced. All these fluctuations are beneficial for making compost or other usages from FWA than FW. The autoclaved liquid product (LA) separated from FWA and liquid condensate (LC) from the released gas possess high COD and TOC. These two liquids can be mixed for use as liquid fertilizers with proper conditioning. Alternatively, further anaerobic digestion of the mixture of FWA, LA, and LC can offer enhanced biogas production for power generation. All these thus match the appeal of sustainable materials management and circular economy. The emitted gas from autoclaving contains no CO and some hydrocarbons. Suitable air pollution control is needed. The results and information obtained are useful for the proper recovery and reuse of abundant food wastes from domestic households and food industries.

2018 ◽  
Vol 126 ◽  
pp. 897-904 ◽  
Author(s):  
P. Ormaechea ◽  
L. Castrillón ◽  
B. Suárez-Peña ◽  
L. Megido ◽  
Y. Fernández-Nava ◽  
...  

2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


2009 ◽  
Vol 166 (2-3) ◽  
pp. 1530-1534 ◽  
Author(s):  
Ane Urtiaga ◽  
Ana Rueda ◽  
Ángela Anglada ◽  
Inmaculada Ortiz

2006 ◽  
Vol 138 (2) ◽  
pp. 363-369 ◽  
Author(s):  
M MALDONADO ◽  
S MALATO ◽  
L PEREZESTRADA ◽  
W GERNJAK ◽  
I OLLER ◽  
...  

2010 ◽  
Vol 73 ◽  
pp. 36-40 ◽  
Author(s):  
Ana Morán ◽  
Rubén Coto ◽  
Javier Belzunce ◽  
Jose Manuel Artímez

<span><span style="font-family: Times New Roman;">Ferritic/Martensitic steels, with chromium contents ranging between 9 and 12%, were introduced into fusion material programs due to their better creep resistance and excellent thermal and nuclear properties compared to austenitic stainless steels. Reduced activation ferritic/martensitic (RAFM) steels are considered promising candidates for the test blanket modules of the future International Thermonuclear Experimental Reactor (ITER), being EUROFER steel is the EU reference material. It is a 9 % Cr RAFM steel which exhibits a tempered martensitic <span style="font-family: Times New Roman;">microstructure and presently allows operation up to 550 </span><span style="font-family: Cambria Math;">⁰</span><span style="font-family: Times New Roman;">C. This paper shows the work carried out</span></span><span style="font-family: Times New Roman;"><span style="font-family: Times New Roman;"> to develop at a pilot plant scale a Reduced Activation Ferritic/Martensitic (RAFM) steel, Asturfer </span><span style="font-family: Times New Roman; font-size: xx-small;"><span style="font-family: Times New Roman; font-size: xx-small;">®</span></span><span style="font-family: Times New Roman;">,</span></span><span style="font-family: Times New Roman;"> with chemical composition and mechanical properties very close to EUROFER steel. </span>


2014 ◽  
Vol 44 ◽  
pp. 278-287 ◽  
Author(s):  
F. Rodríguez-Gómez ◽  
V. Romero-Gil ◽  
J. Bautista-Gallego ◽  
P. García-García ◽  
A. Garrido-Fernández ◽  
...  

1947 ◽  
Vol 69 (11) ◽  
pp. 2812-2818 ◽  
Author(s):  
F. H. Spedding ◽  
E. I. Fulmer ◽  
T. A. Butler ◽  
E. M. Gladrow ◽  
M. Gobush ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document