scholarly journals Biodegradation of Tetrabromobisphenol-A in Mangrove Sediments

2018 ◽  
Vol 11 (1) ◽  
pp. 151 ◽  
Author(s):  
Chu-Wen Yang ◽  
Chien-Sen Liao ◽  
His Ku ◽  
Bea-Ven Chang

Tetrabromobisphenol-A (TBBPA) is a pollutant which has a devastating impact on our environment and should be removed from earth. This research aims to evaluate the aerobic and anaerobic TBBPA degradation and bacterial community changes in mangrove sediments. TBBPA degradation in the sediments was enhanced with a microcapsuled enzyme extract of spent mushroom compost (MC) under aerobic conditions and with zerovalent iron under anaerobic conditions. The TBBPA aerobic or anaerobic degradation rates were enhanced for three time additions. Four bacterial genera (Bacillus, Erythrobacter, Pseudomonas, Rhodococcus) were associated with TBBPA aerobic degradation; and four other bacterial genera (Desulfovibrio, Pseudomonas, Sphaerochaeta, Sphingomonas) were associated with TBBPA anaerobic degradation in the sediment. Moreover, nine methanogens were identified under anaerobic conditions that might also be involved in TBBPA anaerobic degradation in the sediment. Our results demonstrate two feasible methods toward TBBPA bioremediation for mangrove sediments under aerobic and anaerobic conditions.

2020 ◽  
Vol 12 (13) ◽  
pp. 5410
Author(s):  
Chu-Wen Yang ◽  
Yi-En Chen ◽  
Bea-Ven Chang

Acetaminophen (ACE) is a widely used medicine. Currently, concerns regarding its potential adverse effects on the environments are raised. The aim of this study was to evaluate ACE biodegradation in mangrove sediments under aerobic and anaerobic conditions. Three ACE biodegradation strategies in mangrove sediments were tested. The degradation half-lives (t1/2) of ACE in the sediments with spent mushroom compost under aerobic conditions ranged from 3.24 ± 0.16 to 6.25 ± 0.31 d. The degradation half-lives (t1/2) of ACE in sediments with isolated bacterial strains ranged from 2.54 ± 0.13 to 3.30 ± 0.17 d and from 2.62 ± 0.13 to 3.52 ± 0.17 d under aerobic and anaerobic conditions, respectively. The degradation half-lives (t1/2) of ACE in sediments amended with NaNO3, Na2SO4 and NaHCO3 under anaerobic conditions ranged from 1.16 ± 0.06 to 3.05 ± 0.15 d, 2.39 ± 0.12 to 3.84 ± 0.19 d and 2.79 ± 0.14 to 10.75 ± 0.53 d, respectively. The addition of the three electron acceptors enhanced ACE degradation in mangrove sediments, where NaNO3 yielded the best effects. Sixteen microbial genera were identified as the major members of microbial communities associated in anaerobic ACE degradation in mangrove sediments with addition of NaNO3 and Na2SO4. Three (Arthrobacter, Enterobacter and Bacillus) of the sixteen microbial genera were identified in the isolated ACE-degrading bacterial strains.


2006 ◽  
Vol 53 (6) ◽  
pp. 153-159 ◽  
Author(s):  
M. Ike ◽  
M.Y. Chen ◽  
E. Danzl ◽  
K. Sei ◽  
M. Fujita

There is a group of compounds structurally similar to bisphenol-A (BPA), namely bisphenols (BPs), and some of them are considered to be able to partially replace BPA. In order to assess their biodegradability in the aquatic environment, a variety of BPs; BPA, bis(4-hydroxyphenyl)methane (BPF), bis(4-hydroxyphenyl)ethane (BPE), 2,2-bis(4-hydroxy-phenyl)butane (BPB), 2,2-bis(4- hydroxy-3-methylphenyl)propane (BPP), bis(4-hydroxyphenyl)sulfone (BPS), thiodiphenol (TDP) and 4,4′-dihydroxybenzophenone (HBP); were subjected to biodegradation tests under both aerobic and anaerobic conditions. For the aerobic degradation test, a kind of river-die-away method using several river water samples was used, while pond sediments were used for the anaerobic degradation tests in sealed anoxic bottles. As a whole, the examined BPs could be ranked by their biodegradability under aerobic conditions; BPF, HBP >> BPA > BPP > BPE > BPB > TDP >> BPS. On the other hand, the tendency for the anaerobic biodegradability was; BPF > HBP > BPS, BPA, TDP > BPE > BPB. From the viewpoint of biodegradability, BPF seems to be more environmentally-friendly than BPA and, therefore, may be a candidate to replace BPA for reducing the environmental risks.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2089-2092 ◽  
Author(s):  
U. J. Ndon ◽  
A. D. Levine ◽  
B. S. Bradley

Four commercially produced starch based plastics manufactured by the addition of starch to polyethylene matrix were tested in the laboratory to measure their biodegradability under both aerobic and anaerobic conditions. Pure starch was also tested under identical conditions to compare rates and extent of degradation of starch in the plastics to that of pure starch. Plastics surface properties and weight average molecular weights were observed before and after biological tests using Scanning Electron Microscopy (SEM), and High-Temperature Gel-Permeation-liquid Chromatography (HT-GPC) (Lee et al., 1991) respectively. Degradation rates and total percentage of carbon conversion were higher under aerobic tests as compared to tests under anaerobic conditions. Overall carbon conversion in starch based plastics was less than that of pure starch. Surface analysis of the plastics indicated removal of some starch granules from the polyethylene matrix. Significant changes did not occur in the average molecular weights of the plastics from HT-GPC tests which indicated no degradation of the polyethylene matrix.


2002 ◽  
Vol 62 (4a) ◽  
pp. 585-590 ◽  
Author(s):  
M. B. CUNHA-SANTINO ◽  
I. BIANCHINI Jr. ◽  
L. E. F. SERRANO

In order to describe the transformations of tannic acid during its degradation (under aerobic and anaerobic conditions) incubations were performed. To evaluate the oxygen consumption, the tannic acid was added to 1 L of water sample from Monjolinho's reservoir (22º00'S and 47º54'W); these solutions were aerated and the dissolved oxygen was monitored for 16 days, the anaerobic process was avoided. For the anaerobic and aerobic degradation, the dissolved organic carbon and the acid tannic concentrations were estimated on the samples days. The results were fitted to first-order kinetic model, being possible to verify that during the 16 days the oxygen uptake was 3.6 mg.L-1, the deoxygenation rate (kD)of this process was 0.39 day-1. The degradation coefficients were calculated through the decay of the tannic acid and organic carbon concentrations. In the aerobic process, the global decay coefficient (kG) was 0.36 day-1 and in the anaerobic 0.28 day-1. Overall, the obtained degradation coefficients suggest that the bacterioplankton of the Monjolinho's reservoir possess a high capacity of polyphenols degradation.


2003 ◽  
Vol 33 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Marcela Bianchessi da Cunha-Santino ◽  
Lucilia Dias Pacobahyba ◽  
Irineu Bianchini Jr

This study describes the aerobic and anaerobic decay of soluble carbohydrates (CH) and polyphenols (PH) during decomposition of Montrichardia arborescens. Plant and water samples were collected in the Cantá stream (2º 49' 11" N and 60º 40' 24" W), Roraima, Brazil. Decomposition chambers with plant fragments and stream water were incubated. Particulate organic matter was separated from dissolved organic matter and concentrations of CH and PH were determined. The results were fitted to 1st order kinetics models. CH and PH comprised a labile fraction (LCH and LPH) and a refractory fraction (RCH and RPH). The global coefficient associated with LCH weight loss was 1.4 times higher under aerobic conditions (3.4 day-1) higher than for anaerobic conditions. On the other hand, the RCH decay rate in the anaerobic process (0.0074 day-1) was 1.39 times higher. LCH was estimated to be 92% while RCH amounted to 8%. The LPH anaerobic decay was 5.2 times the value for the aerobic decay (0.67 day-1). For both conditions, RPH decay coefficients were similar (» 0.011 day-1). In the aerobic experiments LPH and RPH corresponded to 92.5% and 7.5%, respectively. For the anaerobic process these contents were 85.5% and 14.5%, respectively. From these results, we concluded that in the Cantá stream, the anaerobic degradation of phenols is more efficient than the aerobic counterpart. The aerobic condition provides a faster decay of carbohydrates of this plant.


2013 ◽  
Vol 61 (20) ◽  
pp. 4702-4708 ◽  
Author(s):  
Brian N. Meyer ◽  
Chung Lam ◽  
Sean Moore ◽  
Russell L. Jones

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2147 ◽  
Author(s):  
Chu-Wen Yang ◽  
Chien Liu ◽  
Bea-Ven Chang

The removal of antibiotics from the aquatic environment has received great interest. The aim of this study is to examine degradation of oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC), amoxicillin (AMO), sulfamethazine (SMZ), sulfamethoxazole (SMX), sulfadimethoxine (SDM) in sludge. Four antibiotic-degrading bacterial strains, SF1 (Pseudmonas sp.), A12 (Pseudmonas sp.), strains B (Bacillus sp.), and SANA (Clostridium sp.), were isolated, identified and tested under aerobic and anaerobic conditions in this study. Batch experiments indicated that the addition of SF1 and A12 under aerobic conditions and the addition of B and SANA under anaerobic conditions increased the biodegradation of antibiotics in sludge. Moreover, the results of repeated addition experiments indicated that the efficiency of the biodegradation of antibiotics using the isolated bacterial strains could be maintained for three degradation cycles. Two groups of potential microbial communities associated with the aerobic and anaerobic degradation of SMX, AMO and CTC in sludge were revealed. Twenty-four reported antibiotics-degrading bacterial genera (Achromobacter, Acidovorax, Acinetobacter, Alcaligenes, Bacillus, Burkholderia, Castellaniella, Comamonas, Corynebacterium, Cupriavidus, Dechloromonas, Geobacter, Gordonia, Klebsiella, Mycobacterium, Novosphingobium, Pandoraea, Pseudomonas, Rhodococcus, Sphingomonas, Thauera, Treponema, Vibrio and Xanthobacter) were found in both the aerobic and anaerobic groups, suggesting that these 24 bacterial genera may be the major antibiotic-degrading bacteria in sludge.


Sign in / Sign up

Export Citation Format

Share Document