scholarly journals Effect of Carbon Pricing on Optimal Mix Design of Sustainable High-Strength Concrete

2019 ◽  
Vol 11 (20) ◽  
pp. 5827 ◽  
Author(s):  
Xiao-Yong Wang

Material cost and CO2 emissions are among the vital issues related to the sustainability of high-strength concrete. This research proposes a calculation procedure for the mix design of silica fume-blended high-strength concrete with an optimal total cost considering various carbon pricings. First, the material cost and CO2 emission cost are determined using concrete mixture and unit prices. Gene expression programming (GEP) is used to evaluate concrete mechanical and workability properties. Second, a genetic algorithm (GA) is used to search the optimal mixture, considering various constraints, such as design compressive strength constraint, design workability constraint, range constraints, ratio constraints, and concrete volume constraint. The optimization objective of the GA is the sum of the material cost and the cost of CO2 emissions. Third, illustrative examples are shown for designing various kinds of concrete. Five strength levels (from 95 to 115 MPa with steps of 5 MPa) and four carbon pricings (normal carbon pricing, zero carbon pricing, five-fold carbon pricings, and ten-fold carbon pricings) are considered. A total of 20 optimal mixtures are calculated. The optimal mixtures were found the same for the cases of normal CO2 pricing and zero CO2 pricing. Optimal mixtures with higher strengths are more sensitive to variation in carbon pricing. For five-fold CO2 pricing, the cement content of mixtures with higher strengths (105, 110, and 115 MPa) are lower than those of normal CO2 pricing. As the CO2 pricing increases from five-fold to ten-fold, for mixtures with a strength of 110 MPa, the cement content becomes lower. Summarily, the proposed method can be applied to the material design of sustainable high-strength concrete with low material cost and CO2 emissions.

2013 ◽  
Vol 51 ◽  
pp. 65-74 ◽  
Author(s):  
R. Rathan Raj ◽  
E.B. Perumal Pillai ◽  
A.R. Santhakumar

2019 ◽  
Vol 140 ◽  
pp. 02017
Author(s):  
Anastasia Vasilenko ◽  
Dmitry Chernogorsky ◽  
Dmitry Strakhov ◽  
Leonid Sinyakov

The article is devoted to the analysis of technical and economic efficiency of application of high-strength concrete (HSC) in the eccentrically compressed columns. In the first part of the paper, the effect of concrete grade on in-creasing the column stiffness depending on steel ratio at different values of the relative eccentricity is considered. According to the results of the calculation, application of HSC is most effective at low values of the relative ec-centricity because increasing the concrete strength leads to more intensive increasing of column stiffness than increasing of steel ratio. In the second part of the paper, the material cost of the 1 linear meter of the column is calculated at the fixed value of column stiffness and application domain of HSC is defined in the case under consideration. In addition, load characteristics providing the efficiency of HSC application in the eccentrically compressed columns are determined.


2014 ◽  
Vol 567 ◽  
pp. 476-481
Author(s):  
Nasir Shafiq ◽  
Tehmina Ayub ◽  
Muhd Fadhil Nuruddin

To date, various predictive models for high strength concrete (HSC) have been proposed that are capable of generating complete stress-strain curves. These models were validated for HSC prepared with and without silica fume. In this paper, an investigation on these predictive models has been presented by applying them on two different series of HSC. The first series of HSC was prepared by utilizing 100% cement content, while second series was prepared by utilizing 90% cement and 10% Metakaolin. The compressive strength of the concrete was ranged from 71-87 MPa. For each series of HSC, total four cylinders of the size 100×200mm were cast to obtain the stress-strain curves at 28 days.It has been found that the pattern of the stress-strain curve of each cylinder among four cylinders of each series was different from other, in spite of preparing from the similar batch. When predictive models were applied to these cylinders using their test data then it was found that all models more or less deficient to accurately predict the stress-strain behavior.


2002 ◽  
Vol 7 ◽  
pp. 19p1-19p11
Author(s):  
Kenichi SASAKI ◽  
Yoshitaka HACHIYA ◽  
Yukitomo TSUBOKAWA ◽  
Shoichi KAMETA ◽  
Takashi TOCHIGI

2014 ◽  
Vol 61 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Alaa M. Rashad ◽  
Hosam.El Din H. Seleem

Abstract This paper presents the results of an investigation to assess the validity of producing high strength concrete (HSC) using moderate cement content to reduce the consumption of the binders. Cement content is lowered from 500 kg/m3 to 400 kg/m3. The difference in cement content is compensated by the addition of fine limestone (LS) powder. Pozzolans were incorporated as an addition to cement. Different coarse aggregate types were employed. Workability, compressive strength, tensile strength, permeability and drying shrinkage were measured. Test results revealed that HSC with a compressive strength up to 79 MPa (at 90 days age) could be produced with moderate cement content. The mixtures consistency and drying shrinkage are greatly enhanced due to employing LS powder and the permeability is satisfactory. To provide better solution to some concrete disadvantages like cracking and drying shrinkage, using an economic rate for cement are believed to reduce these disadvantages.


2021 ◽  
Vol 11 (21) ◽  
pp. 10468
Author(s):  
Huanjun Jiang ◽  
Ahmed Salih Mohammed ◽  
Reza Andasht Kazeroon ◽  
Payam Sarir

The ultimate strength of composite columns is a significant factor for engineers and, therefore, finding a trustworthy and quick method to predict it with a good accuracy is very important. In the previous studies, the gene expression programming (GEP), as a new methodology, was trained and tested for a number of concrete-filled steel tube (CFST) samples and a GEP-based equation was proposed to estimate the ultimate bearing capacity of the CFST columns. In this study, however, the equation is considered to be validated for its results, and to ensure it is clearly capable of predicting the ultimate bearing capacity of the columns with high-strength concrete. Therefore, 32 samples with high-strength concrete were considered and they were modelled using the finite element method (FEM). The ultimate bearing capacity was obtained by FEM, and was compared with the results achieved from the GEP equation, and both were compared to the respective experimental results. It was evident from the results that the majority of values obtained from GEP were closer to the real experimental data than those obtained from FEM. This demonstrates the accuracy of the predictive equation obtained from GEP for these types of CFST column.


Sign in / Sign up

Export Citation Format

Share Document