Building Research Journal
Latest Publications


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By De Gruyter Open Sp. Z O.O.

1339-682x

2015 ◽  
Vol 61 (2) ◽  
pp. 85-100 ◽  
Author(s):  
Vladimír Živica ◽  
Martin T. Palou ◽  
Martin Križma

Abstract Concrete is the world's most versatile, durable and reliable construction material. Next to water, concrete is the second most used substance on earth and it requires large quantities of Portland cement. The industrial sector is the third largest source of man-made carbon dioxide emissions after the transportation sector as the major generator of carbon dioxide, which pollutes the atmosphere. Ordinary Portland cement (OPC) production produces the largest amount of carbon dioxide amongst all industrial processes. In addition to that a large amount of energy is also consumed for the cement production. The production of OPC not only consumes a huge amount of the natural resources i.e. limestone and fossil fuels but also produces almost 0.9 t of CO2 for 1t of cement clinker production. Thus, the world cement production generates 2.8 billion tons of manmade greenhouse gas annually. Hence, it is inevitable to find an alternative material to the existing most expensive, most resource and energy consuming Portland cement. Geopolymer cements are innovative binders which can be produced by the chemical action of aluminosilicate materials plenty available worldwide. They are rich in silica and alumina reacting with alkaline solution and producing aluminosilicate gel that acts as the binding material for the concrete. Geopolymers are synthesized by polycondensation reaction of geopolymeric precursor and alkali polysilicates. The paper presents data on the important engineering properties of geopolymer cements showing that these cements offer an alternative to, and potential replacement for, OPC. Geopolymer technology also has the potential to reduce global greenhouse emissions caused by OPC production. Due to the high level of mechanical properties of geopolymer cements and their environmentally beneficial technology they appear as a prospective construction material for the future.


2015 ◽  
Vol 61 (2) ◽  
pp. 101-114
Author(s):  
Hadad S. Hadad ◽  
Ibrahim M. Metwally ◽  
Sameh El-Betar

Abstract RC shear walls have been widely used as the main lateral-load resisting system in medium and high-rise buildings because of their inherent large lateral stiffness and load resistance. But, in general, the energy dissipating capacity of RC shear walls is not very good and it has been found that using the bracing system gives good results. The main purpose of this paper is to study the effect of different types of bracing on the lateral load capacity of the frame. Also, the research contains a comparison between the braced and infilled frames to decide on the best system. The research scheme consists of four frames; the bare frame, two frames the first of which was braced with concrete, the second was braced with steel bracing and the fourth frame was infilled with solid cement bricks. All the specimens were tested under cyclic loading. The results gave some important conclusions; braced and infilled bare frames increased the lateral strength of the bare frame depending on the type of bracing and infill. Also, the different types of bracing and the infill increased the initial stiffness of the bare frame by a reasonable value. The energy dissipation for the braced and infilled frames is always higher than that for the bare frame up to failure. Also, numerical modeling was carried out with the nonlinear software platform (IDARC). The numerical results obtained with the calibrated nonlinear model are presented and compared with the experimental results. Good agreement was achieved between the numerical simulation and the test results.


2015 ◽  
Vol 61 (2) ◽  
pp. 115-128
Author(s):  
Chen Wang ◽  
Faizul Azli Mohd Rahim ◽  
Nurul Safwah Mohd Yusoff ◽  
Hamzah Abdul Rahman ◽  
Vili How

Abstract Daylighting is often integrated into a building as an architectural statement and for energy savings. However, the benefits from daylighting extend beyond architecture and energy savings. Solar bottle bulb is an invention that is highly effective and cost effective enough to be used in huge numbers for those without sources of interior lighting. This invention is very easy and excessively cheap, requires only a bottle, some roofing materials, water and minimal amount of regularly found chemical and no electricity is needed. This paper reviews the critical retrospect of daylighting through the solar bottle bulb perspective. It highlights the need for solar bottle bulbs use within the underprivileged areas of the world and the importance of this invention as a pathway towards sustainability. This paper presents a review on the designs, principles and applications of the invention that have startled the poor people into a new way of life. The review consists of the assessment of journals, books, newspapers, reports and online sources in the field of daylighting and solar bottle bulb.


2015 ◽  
Vol 61 (2) ◽  
pp. 67-84
Author(s):  
P. Stanak ◽  
A. Tadeu ◽  
J. Sladek ◽  
V. Sladek

Abstract This paper presents a general 2.5D meshless MLPG methodology for the computation of the elastic response of longitudinally invariant structure subjected to the incident wave field. A numerical frequency domain model is established using the Fourier transform in time and longitudinal coordinate domains. This allows for significant reduction of computational effort required. In the MLPG method the Moving-Least Squares (MLS) scheme is employed for the approximation of the spatial variation of displacement field. No finite elements are required for the approximation or integration of unknowns. A small circular subdomain is introduced around each nodal point in the analyzed domain. Local integral equations derived from the governing equations are specified on these subdomains. Continuously non-homogeneous material properties are varying in the cross-section of the analyzed structure. A simple patch test is introduced to assess the accuracy and the convergence of developed numerical model. At the end of the paper, numerical examples illustrate the applicability of the proposed numerical formulation.


2014 ◽  
Vol 61 (3) ◽  
pp. 143-150 ◽  
Author(s):  
A. Al-Swaidani ◽  
S. Aliyan ◽  
N. Adarnaly ◽  
B. Hanna ◽  
E. Dyab

Abstract In the study, three types of cement have been prepared; one CEM I type (the control sample) and two blended cements: CEM II/A-P and CEM II/B-P (EN 197-1), each of them with three replacement levels of volcanic scoria: (10 %, 15 %, 20 % wt.) and (25 %, 30 %, 35 % wt.), respectively. Strength development of mortars has been investigated at 2, 7, 28 and 90 days curing. Evaluation of chemical resistance of mortars containing scoria-based cements has been investigated through exposure to 5 % sulphate and 5 % sulphuric acid solutions in accordance with ASTM C1012 & ASTM 267, respectively. Drying shrinkage has been evaluated in accordance with ASTM C596. Test results showed that at early ages, the mortars containing CEM II/B-P binders had strengths much lower than that of the control mortar. However, at 90 days curing, the strengths were comparable to the control mortar. In addition, the increase of scoria significantly improved the sulphate resistance of mortars. Further, an increase in scoria addition improved the sulphuric acid resistance of mortar, especially at the early days of exposure. The results of drying shrinkage revealed that the CEM II/B-P mortar bars exhibited a greater contraction when compared to the control mortar, especially at early ages. However, drying shrinkage of mortars was not influenced much at longer times.


2014 ◽  
Vol 61 (3) ◽  
pp. 167-177 ◽  
Author(s):  
B. Mansoury ◽  
H. R. Tabatabaiefar

Abstract This study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing residential buildings. Based on the research findings, the most effective and practical method of retrofitting has been proposed in order to improve energy efficiency of existing buildings. In order to achieve this goal, an existing residential building has been simulated in FirstRate 5 software so as to determine the existing thermal performance of the building. Afterwards, considering sustainable design principles, different insulation layers, glazing, and construction materials have been employed to conduct a comprehensive thermal performance study. Based on the research outcomes, the best technique for increasing energy efficiency of existing buildings and reducing their environmental impact and footprint has been identified and proposed for practical purposes.


2014 ◽  
Vol 61 (3) ◽  
pp. 151-166 ◽  
Author(s):  
R. Kittler ◽  
S. Darula

Abstract Recently illuminance levels under ISO/CIE homogeneous standard sky types were characterised in their relative terms after ISO/CIE (2004, 2003) standardised as normalised by the luminance in the zenith. Sky luminance and horizontal illuminance based on the gradation and scattering indicatrix functions, including the extreme overcast cases frequently encountered in nature, were recently determined in absolute physical units of luminance in kilocandles per meter square and of illuminance in kilolux. The historical search to find energy and visibility critical sky luminance distributions shows a progression of steps in studying the worst or critical overcast situations. That progression has enabled the determination and evaluation of interior illuminance for comparison of the merits of dual daylighting and artificial lighting under established criteria for comfortable visibility.


2014 ◽  
Vol 61 (3) ◽  
pp. 129-142
Author(s):  
P. Staňák ◽  
J. Sládek ◽  
V. Sládek ◽  
S. Krahulec

Abstract In this paper a computational homogenization technique is applied to thermal analyses in porous materials. A volume fraction of pores on the microstructural level is the key factor that changes the macroscopic thermal properties. Thus, the distribution of thermal fields at the macroscopic level is analysed through the incorporation of the microstructural response on the representative volume element (RVE) assuming a uniform distribution of pores. For the numerical analysis the scaled boundary finite element method (SBFEM) is introduced to compute the thermal response of RVE. The SBFEM combines the main advantages of the finite element method (FEM) and the boundary element method (BEM). In this method, only the boundary is discretized with elements leading to the reduction of spatial dimension by one, similarly as in the BEM. It reduces computational efforts in the mesh generation and CPU time. The proposed method is used to study square RVE with a circular and elliptic pore under the thermal load. Dimensions of the pore are varied to obtain different volume fractions of matrix material. Numerical results for effective thermal conductivities obtained via SBFEM modelling show an excellent agreement with the finite element analysis using commercial software COMSOL Multiphysics.


2014 ◽  
Vol 61 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Alaa M. Rashad ◽  
Hosam.El Din H. Seleem

Abstract This paper presents the results of an investigation to assess the validity of producing high strength concrete (HSC) using moderate cement content to reduce the consumption of the binders. Cement content is lowered from 500 kg/m3 to 400 kg/m3. The difference in cement content is compensated by the addition of fine limestone (LS) powder. Pozzolans were incorporated as an addition to cement. Different coarse aggregate types were employed. Workability, compressive strength, tensile strength, permeability and drying shrinkage were measured. Test results revealed that HSC with a compressive strength up to 79 MPa (at 90 days age) could be produced with moderate cement content. The mixtures consistency and drying shrinkage are greatly enhanced due to employing LS powder and the permeability is satisfactory. To provide better solution to some concrete disadvantages like cracking and drying shrinkage, using an economic rate for cement are believed to reduce these disadvantages.


2014 ◽  
Vol 61 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Mojtaba Maghrebi ◽  
Claude Sammut ◽  
Travis S. Waller

Abstract Being able to precisely predict the duration of concrete operations can help construction managers to organize sites and machineries more efficiently, especially when there is limited space for equipment on site. Currently there is no theoretical method for estimating the duration of the concrete pouring process. Normally, the maximum capacity of pumping facilities on construction sites is not used, and concrete pumps are idle for a considerable time as a result of the arrival of concrete trucks being delayed. In the light of this issue, this paper considers the supply chain parameters of Ready Mixed Concrete (RMC) as a means of solving this problem. Artificial Neural Network (ANN) is hired for modelling/predicting the productivity of a concrete operation. The proposed model is tested with a real database of an RMC in the Sydney metropolitan area that has 17 depots and around 200 trucks. Results show that there is an improvement in the achieved results when these are compared to the results of relevant studies that only considered the construction parameters for predicting the productivity of concrete operations


Sign in / Sign up

Export Citation Format

Share Document