scholarly journals Fault Classifications in Distribution Systems Consisting of Wind Power as Distributed Generation Using Discrete Wavelet Transforms

2019 ◽  
Vol 11 (24) ◽  
pp. 7209
Author(s):  
Theerasak Patcharoen ◽  
Atthapol Ngaopitakkul

This paper proposed a fault type classification algorithm in a distribution system consisting of multiple distributed generations (DGs). The study also discussed the changing of signal characteristics in the distribution system with DGs during the occurrence of different fault types. Discrete Wavelet Transform (DWT)-based signal processing has been used to construct a classification algorithm and a decision tree to classify fault types. The input data for the algorithm is extracted from the three-phase current signal under normal conditions and during fault occurrence. These signals are recorded from the substation, load, and DG bus. The performance of the proposed classifying algorithm has been tested on a simulation system that was modeled after part of Thailand’s 22 kV distribution system, with a 2-MW wind power generation as the DG, connected to the distribution line by PSCAD software. The parameters that were taken into consideration consisted of the fault type, location of the fault, location of DG(s), and the number of DGs, to evaluate the performance of the proposed algorithm under various conditions. The result of the simulation indicated significant changes in current signal characteristics when installing DGs. In addition, the proposed algorithm has achieved a satisfactory accuracy in terms of identifying and classifying fault types when applied to a distribution system with multiple DGs.

2020 ◽  
Vol 10 (4) ◽  
pp. 1203 ◽  
Author(s):  
Chaichan Pothisarn ◽  
Jittiphong Klomjit ◽  
Atthapol Ngaopitakkul ◽  
Chaiyan Jettanasen ◽  
Dimas Anton Asfani ◽  
...  

This paper presents a comparative study on mother wavelets using a fault type classification algorithm in a power system. The study aims to evaluate the performance of the protection algorithm by implementing different mother wavelets for signal analysis and determines a suitable mother wavelet for power system protection applications. The factors that influence the fault signal, such as the fault location, fault type, and inception angle, have been considered during testing. The algorithm operates by applying the discrete wavelet transform (DWT) to the three-phase current and zero-sequence signal obtained from the experimental setup. The DWT extracts high-frequency components from the signals during both the normal and fault states. The coefficients at scales 1–3 have been decomposed using different mother wavelets, such as Daubechies (db), symlets (sym), biorthogonal (bior), and Coiflets (coif). The results reveal different coefficient values for the different mother wavelets even though the behaviors are similar. The coefficient for any mother wavelet has the same behavior but does not have the same value. Therefore, this finding has shown that the mother wavelet has a significant impact on the accuracy of the fault classification algorithm.


2012 ◽  
Vol 433-440 ◽  
pp. 3980-3986
Author(s):  
Jutanon Kaewmanee ◽  
Somporn Sirisumrannukul

The paper develops a tool to identify the fault type, the fault location, and an associated restoration procedure following a fault in a distribution system. These coupled tasks are important for electric power utilities to provide better services to their customers and to achieve a target reliability level. Fault type and fault location are identified by an apparent impedance-based method in which the linear relationship between the line impedance and distance is established. A service restoration with a number of objectives and constraints are solved by a fuzzy decision method. To demonstrate the effectiveness of the methodology, service restoration a large-scaled interconnected distribution system within the service area of Metropolitan Electricity Authority (MEA) is demonstrated. It found that, following a fault event, the fault type, the fault location and a proper restoration plan can be reached very efficiently and therefore provide valuable information decision support and flexibility to distribution system operators for restoration scheduling of distribution systems.


2014 ◽  
Vol 529 ◽  
pp. 455-459
Author(s):  
Nan Xu ◽  
Shan Shan Li ◽  
Hao Ming Liu

Considering the probabilistic of the wind power and the solar power, a fault recovery method for distribution systems with the wind power and the solar power is presented in this paper. For the wind power, a simplified steady-state equivalent model of an asynchronous wind generator is added into the Jacobian matrix to consider the impact of the wind power on systems. For the solar power, its output is considered as an injected power which is related with solar irradiance. Three-point estimate is employed to solve the probabilistic power flow of distribution systems with the wind power and the solar power. The restoration is described as a multi-objective problem with the mean of the system loss and the number of switch operations. Fast elitist non-dominated sorting partheno-genetic algorithm is used to solve this multi-objective problem. IEEE 33-bus system is used as an example and the results show that the models and algorithms in this paper are efficient.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


2011 ◽  
Vol 121-126 ◽  
pp. 1269-1273
Author(s):  
Wen Xiu Tang ◽  
Mo Zhang ◽  
Ying Liu ◽  
Xu Fei Lang ◽  
Liang Kuan Zhu

In this paper, a novel method is investigated to detect short-circuit fault signal transmission lines in strong noise environment based on discrete wavelet transform theory. Simulation results show that the method can accurately determine the fault position, can effectively analyze the non-stationary signal and be suitable for transmission line fault occurred after transient signal detection. Furthermore, it can effectively eliminate noise effects of fault signal so as to realize the transmission lines of accurate fault.


2018 ◽  
Vol 14 (1) ◽  
pp. 65-79
Author(s):  
Sara Authafa

In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the simulations and analysis are performed utilizing MATLAB R2016b version software package.


2021 ◽  
pp. 0309524X2110445
Author(s):  
Mohamed Azeroual ◽  
Younes Boujoudar ◽  
Ayman Aljarbouh ◽  
Hassan El Moussaoui ◽  
Hassane El Markhi

The integration of distributed generation (DG) units such as wind power into the distribution network are one of the most viable technique to meet the energy demand increases. But, the integration of these DG units into power systems can change the dynamic performances of the systems and create new challenges that are necessary to be taken care of in the operation of the network. The fault location and diagnosis are the most significant technical challenges that can improve power systems’ reliability and stability. In this paper, a Multi-Agent System (MAS) based on current amplitude and current direction measured proposed for fault location, isolation, and power restoration in a smart distribution system with the presence of a wind power generator. The agents can communicate and collaborate to locate the faulted line, then send trips signal to corresponding circuit breakers accordingly. The simulation results show the performance of the proposed techniques.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2579 ◽  
Author(s):  
Guang Shen ◽  
Yong Zhang ◽  
Haifeng Qiu ◽  
Chongyu Wang ◽  
Fushuan Wen ◽  
...  

A comprehensive method is presented in this work to locate faults in distribution systems with distributed generators (DGs). A two-level model is developed for this purpose with both telecommunication and telemetering data employed, so as to make good use of fused information for attaining a more credible optimization solution under scenarios with alarm distortions of feeder terminal units (FTUs) or loss during communication. First, at the upper level, an analytic model is developed to search all potential faulted sections/candidates based on the telecommunication data. Then, on the lower level, a model is presented using the telemetering data to identify the most likely fault location from the candidates provided by the upper model. The essential features of the two-level diagnosis model are demonstrated through a number of case studies. Simulation results have shown that the proposed approach is capable of not only locating the faulted section(s) in a distribution system with DGs but also identifying false and/or missing alarms.


Author(s):  
Sophi Shilpa Gururajapathy ◽  
Hazlie Mokhlis ◽  
Hazlee Azil Illias

PurposeThe purpose of this paper is to identify faults in distribution systems which are unavoidable because of adverse weather conditions and unexpected accidents. Hence, quick fault location is vital for continuous power supply. However, most fault location methods depend on the stored database for locating fault. The database is created by simulation, which is time consuming. Therefore, in this work, a comprehensive fault location method to detect faulty section and fault distance from one-ended bus using limited simulated data is proposed.Design/methodology/approachThe work uses voltage sag data measured at a primary substation. Support vector machine estimates the data which are not simulated. The possible faulty section is determined using matching approach and fault distance using mathematical analysis.FindingsThis work proposed a ranking analysis for multiple possible faulty sections, and the fault distance is calculated using Euclidean distance approach.Practical implicationsThe research work uses Malaysian distribution system as it represents a practical distribution system with multiple branches and limited measurement at primary substation. The work requires only metering devices to identify fault which is cost effective. In addition, the distribution system is simulated using real-time PSCAD by which the capability of proposed method can be fully tested.Originality/valueThe paper presents a new method for fault analysis. It reduces simulation time and storage space of database. The work identifies faulty section and ranks the prior faulty section. It also identifies fault distance using a mathematical approach.


Sign in / Sign up

Export Citation Format

Share Document