Distribution System Fault Recovery with Undispatchable Distributed Generations

2014 ◽  
Vol 529 ◽  
pp. 455-459
Author(s):  
Nan Xu ◽  
Shan Shan Li ◽  
Hao Ming Liu

Considering the probabilistic of the wind power and the solar power, a fault recovery method for distribution systems with the wind power and the solar power is presented in this paper. For the wind power, a simplified steady-state equivalent model of an asynchronous wind generator is added into the Jacobian matrix to consider the impact of the wind power on systems. For the solar power, its output is considered as an injected power which is related with solar irradiance. Three-point estimate is employed to solve the probabilistic power flow of distribution systems with the wind power and the solar power. The restoration is described as a multi-objective problem with the mean of the system loss and the number of switch operations. Fast elitist non-dominated sorting partheno-genetic algorithm is used to solve this multi-objective problem. IEEE 33-bus system is used as an example and the results show that the models and algorithms in this paper are efficient.

Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 187
Author(s):  
Jinhong Ahn ◽  
Eel-Hwan Kim

In this paper, we propose a microgrid (MG) implementation method through Medium-Voltage Direct Current (MVDC) connection between Gapado Island and Marado Island in Korea. MVDC is a facility that can be efficiently applied between small power generation complexes. The structure of power generation facilities is mainly supplied by diesel generators, while solar and wind power generators supply additional power. An Energy Storage System (ESS) is also used to reduce the output fluctuations of wind and solar power generation. Since power systems in such areas are low-voltage and low-power distribution systems, problems can arise in terms of power management due to power generators with variable output characteristics such as solar power and wind power generators. In addition, when a major power source such as a diesel generator is dropped, the power system collapses. However, these problems can be solved by interchanging the power between the micro-grids through the connection of MVDCs. With the MVDC connected, we verify the impact of the power system on Marado Island and Gapado Island due to the input and opening of solar, wind and diesel generators. The proposed configuration uses the PSCAD/EMTDC simulation program.


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


2021 ◽  
Vol 9 ◽  
Author(s):  
Johanna Olovsson ◽  
Maria Taljegard ◽  
Michael Von Bonin ◽  
Norman Gerhardt ◽  
Filip Johnsson

This study analyses the impacts of electrification of the transport sector, involving both static charging and electric road systems (ERS), on the Swedish and German electricity systems. The impact on the electricity system of large-scale ERS is investigated by comparing the results from two model packages: 1) a modeling package that consists of an electricity system investment model (ELIN) and electricity system dispatch model (EPOD); and 2) an energy system investment and dispatch model (SCOPE). The same set of scenarios are run for both model packages and the results for ERS are compared. The modeling results show that the additional electricity load arising from large-scale implementation of ERS is mainly, depending on model and scenario, met by investments in wind power in Sweden (40–100%) and in both wind (20–75%) and solar power (40–100%) in Germany. This study also concludes that ERS increase the peak power demand (i.e., the net load) in the electricity system. Therefore, when using ERS, there is a need for additional investments in peak power units and storage technologies to meet this new load. A smart integration of other electricity loads than ERS, such as optimization of static charging at the home location of passenger cars, can facilitate efficient use of renewable electricity also with an electricity system including ERS. A comparison between the results from the different models shows that assumptions and methodological choices dictate which types of investments are made (e.g., wind, solar and thermal power plants) to cover the additional demand for electricity arising from the use of ERS. Nonetheless, both modeling packages yield increases in investments in solar power (Germany) and in wind power (Sweden) in all the scenarios, to cover the new electricity demand for ERS.


2021 ◽  
Author(s):  
◽  
Ramesh Kumar Behara

The growing needs for electric power around the world has resulted in fossil fuel reserves to be consumed at a much faster rate. The use of these fossil fuels such as coal, petroleum and natural gas have led to huge consequences on the environment, prompting the need for sustainable energy that meets the ever increasing demands for electrical power. To achieve this, there has been a huge attempt into the utilisation of renewable energy sources for power generation. In this context, wind energy has been identified as a promising, and environmentally friendly renewable energy option. Wind turbine technologies have undergone tremendous improvements in recent years for the generation of electrical power. Wind turbines based on doubly fed induction generators have attracted particular attention because of their advantages such as variable speed, constant frequency operation, reduced flicker, and independent control capabilities for maximum power point tracking, active and reactive powers. For modern power systems, wind farms are now preferably connected directly to the distribution systems because of cost benefits associated with installing wind power in the lower voltage networks. The integration of wind power into the distribution network creates potential technical challenges that need to be investigated and have mitigation measures outlined. Detailed in this study are both numerical and experimental models to investigate these potential challenges. The focus of this research is the analytical and experimental investigations in the integration of electrical power from wind energy into the distribution grid. Firstly, the study undertaken in this project was to carry out an analytical investigation into the integration of wind energy in the distribution network. Firstly, the numerical simulation was implemented in the MATLAB/Simulink software. Secondly, the experimental work, was conducted at the High Voltage Direct Centre at the University of KwaZulu-Natal. The goal of this project was to simulate and conduct experiments to evaluate the level of penetration of wind energy, predict the impact on the network, and propose how these impacts can be mitigated. From the models analysis, the effects of these challenges intensify with the increased integration of wind energy into the distribution network. The control strategies concept of the doubly fed induction generator connected wind turbine was addressed to ascertain the required control over the level of wind power penetration in the distribution network. Based on the investigation outcomes we establish that the impact on the voltage and power from the wind power integration in the power distribution system has a goal to maintain quality and balance between supply and demand.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5446 ◽  
Author(s):  
Ibrahim Mohamed Diaaeldin ◽  
Shady H. E. Abdel Aleem ◽  
Ahmed El-Rafei ◽  
Almoataz Y. Abdelaziz ◽  
Ahmed F. Zobaa

Soft open points (SOPs) are power electronic devices that replace the normal open points in active distribution systems. They provide resiliency in terms of transferring electrical power between adjacent feeders and delivering the benefits of meshed networks. In this work, a multi-objective bilevel optimization problem is formulated to maximize the hosting capacity (HC) of a real 59-node distribution system in Egypt and an 83-node distribution system in Taiwan, using distribution system reconfiguration (DSR) and SOP placement. Furthermore, the uncertainty in the load is considered to step on the real benefits of allocating SOPs along with DSR. The obtained results validate the effectiveness of DSR and SOP allocation in maximizing the HC of the studied distribution systems with low cost.


Author(s):  
Lazhar Bougouffa ◽  
Abdelaziz Chaghi

<p>Protective relays coordination is the process of determining the exact relay settings such that the relay closes to the fault would operates faster than other relays. The operating time of each relay depends on two independent variables called Pickup current (Ip) and Time Dial Setting (TDS). In this paper, a PSO algorithm has been presented to determine the coordination of Directional Over-Current Relays (DOCRs) in presence of multi-system FACTS devises. From the simulation result and analysis, the impact of TCSC location in the in 33-bus distribution system on Directional Over-Current Relays has been observed on the optimal relays settings as well as the effectiveness of the proposed algorithm in finding optimal coordination of directional over-current relays.</p>


Sign in / Sign up

Export Citation Format

Share Document