scholarly journals Case Study of Support Frame Optimization Using a Distant Load

2020 ◽  
Vol 12 (3) ◽  
pp. 974
Author(s):  
Paweł Lonkwic ◽  
Krzysztof Przystupa ◽  
Tomasz Krakowski ◽  
Hubert Ruta

This article presents the results of the structure optimization for the power unit carrying frame of a friction lift by means of numerical calculations using the finite element method (FEM). Optimization analysis covered the frame structure. The analysis was focused on strength optimization with the use of a remote load and on manufacturing optimization with attention paid to the operating times necessary to complete the production process of the carrying frame subassemblies. The Solidworks simulation program was used to optimize the frame in terms of the strength criterion. The program allowed both quantitative and qualitative assessments of the frame material effort before and after optimization.

Author(s):  
Luis Santos-Correa ◽  
Diego Pineda-Maigua ◽  
Fernando Ortega-Loza ◽  
Jhonatan Meza-Cartagena ◽  
Ignacio Abril-Naranjo ◽  
...  

Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Angeliki Papalou ◽  
Dimitrios K. Baros

Wildfires have always been a threat to forests and areas of high combustible vegetation. When they are not kept under control, they can spread to residential areas, creating severe damage and destruction. This paper examines the effects of the extreme heat conditions that developed during a wildfire on buildings as a function of their construction type. One of the deadliest wildfires in Greece (July 2018) is considered as a case study, and the damage that occurred to buildings during this event is presented. The temperature of the various structural subsystems in extreme heat conditions was estimated using the finite element method. Parameters that influenced the corresponding temperature distribution were identified. Simple guidelines are given to prevent or reduce damage in buildings exposed to wildfires.


2015 ◽  
Vol 802 ◽  
pp. 155-160
Author(s):  
Chuen Keit Leing ◽  
Anwar Mohammed Parvez ◽  
Wael Elleithy

This paper investigates the effects of footfall induced vibrations on the floors of a 3-storey sub-frame structure. Composite and concrete floors were examined. Variables involved are floor widths, floor thicknesses, floor aspect ratios and column heights. Models are generated and analysed using the finite element method. The vibration responses were represented in terms of displacements and accelerations. Results show that higher vibration responses occurs on longer floor widths, thinner floor slabs and higher floor aspect ratios for both composite and concrete floors.


2000 ◽  
Vol 37 (02) ◽  
pp. 88-99
Author(s):  
R. G. Latorre ◽  
P. D. Herrington

This paper presents the results of an investigation on the suitability of using hull panels with alternating fixed and floating frames for a 30–40 knot aluminum catamaran ferry. A prototype 4.6 m × 1.8 m bottom hull panel with alternating frames is analyzed numerically and physically tested. The corresponding finite-element analyses and test results are in good agreement. The results show that the floating frame hull panel design is a feasible structure for an aluminum catamaran. The floating frame structure was then used for a 33-knot, 250-passenger aluminum catamaran ferry designed to meet the ABS High Speed Craft rules. A midship section of the catamaran hull was analyzed using the finite-element method. Catamaran weight estimates, heave and pitch motions, and powering estimates are also provided. The results show that the alternating floating frame structure was within the ABS rules stress allowables.


2014 ◽  
Vol 580-583 ◽  
pp. 3042-3045
Author(s):  
Li Juan Cheng ◽  
Xin Chi Yan

Using matrix displacement method and the finite element method to calculate the internal force of the same frame, and then comparing the results. Meanwhile, due to the theory that SM Solver can calculate the exact solution of rigid frame structure forces, we use it to support our experiment. Finally, we succeed in calculating and proving that Matrix displacement method and the finite element method have the same result in solving the rigid frame structure forces.


2011 ◽  
Vol 71-78 ◽  
pp. 1383-1387 ◽  
Author(s):  
Wen Juan Yao ◽  
Wu Yang ◽  
Xiao Yu Liu

Taking Tianjin Yonghe bridge for example, the finite element method is adopted to simulate each stages of cable replacement process, the dates of tension, the alignment of main beam and the change of stress before and after cable replacement are compared and analysed, The measured value is greatly consistent with calculated value, Stress state of the bridge has been greatly improved, the weight of main beam bearing by the cable will be shared by a few closed cable after unloading, so the cables which are more serious corroded should be replaced.


Sign in / Sign up

Export Citation Format

Share Document