scholarly journals Evidence of Arithmetical Uncertainty in Estimation of Light and Water Use Efficiency

2020 ◽  
Vol 12 (6) ◽  
pp. 2271 ◽  
Author(s):  
Meetpal S. Kukal ◽  
Suat Irmak

It was demonstrated that conventional resource use efficiency (RUE) estimation methodology is largely subject to arithmetic weakness. Extensive field research data on aboveground biomass (AGB), absorbed photosynthetically active radiation (APAR), and crop evapotranspiration (ETc) in maize, soybean, sorghum, and winter wheat confirmed this methodological bias for light use efficiency (LUE) and water use efficiency (WUE) estimation. LUE and WUE were derived using cumulated (data aggregates across samplings) and independent (data increments across samplings) approaches. Use of cumulated data yielded strong-but-false correlation between AGB and APAR or ETc, being a statistical artefact. RUE values from an independent approach were substantially lower than that from a cumulated approach with greater standard errors. Overall, a cumulated approach tends to oversimplify the complex interactions among carbon and resource coupling in agroecosystems, which is accurately represented when employing an independent approach instead.

2020 ◽  
Author(s):  
Nicola Damiano ◽  
Chiara Cirillo ◽  
Giovanna Battipaglia ◽  
Chiara Amitrano ◽  
Antonio Pannico ◽  
...  

<p>In the Mediterranean region, climate change is intensifying the need to improve the resource use efficiency of crops (e.g. water use efficiency) and to increase yield, quality and stability of productions, especially in high profitability and vulnerable crops as grapevine. In a climate change scenario, with increasing temperature and frequency of extreme events, such as prolonged periods of drought, the improvement of knowledge about the plasticity of morpho-functional traits in vines, becomes pivotal. Only a deep knowledge of vine responses to environmental constraints can help achieving the correct management of cultivation factors towards sustainability.</p><p>The objective of this study is to apply a multidisciplinary approach for monitoring the resource use efficiency and resource allocation during vine development up to wine production. This general objective will be pursued by analysing the complex relationships between parameters in the continuum environment/plant/wine with specific emphasis on the influence of water availability on the vine, grapes, must and finally wine, in order to relate climate, plant water status and oenological characteristics.</p><p>The study was conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Falanghina’ located in southern Italy (La Guardiense farm, Guardia Sanframondi, Benevento, Campania region).</p><p>The vineyard performance was monitored on the basis of several morphological and eco-physiological parameters, measured in the main phenological phases, including: plant architecture, fertility, leaf anatomical traits, photosynthetic efficiency, leaf gas exchanges, nutritional status, berry and must quality. Water use efficiency was estimated through the analysis of anatomical and stable isotope traits (linked with hydraulic and resource efficiency parameters) from tree-ring series and leaf samples. Stable isotopes were also analysed in the must, in order to check the occurrence of an isotopic signature from the plants towards the must.</p><p>The approach proved to be promising for achieving a comprehensive understanding on the impact of environmental constraints not only on plant behaviour, but also on the characteristics of the oenological products, furnishing at the same time a promising tool to reconstruct vine status from the isotopic trace in the must.</p><p> </p>


Author(s):  
R. Ford Denison

This chapter considers the challenge of improving crop resource-use efficiency using biotechnology or traditional plant breeding. It argues that some of biotechnology's stated goals, such as more efficient use of water by crops, are unlikely to be achieved without tradeoffs. After providing an overview of crop genetic improvement via traditional plant breeding or biotechnology, the chapter discusses the importance of greater resource-use efficiency and increasing yield potential. It then explains how natural selection has improved the efficiency of photosynthesis as well as water-use efficiency and how tradeoffs limit biotechnology improvement of crop water use. It also assesses the potential of genetic engineering to improve nutrient-use efficiency and asserts that near-term benefits of biotechnology have been exaggerated. The chapter concludes with a review of biotechnology's possible benefits and risks.


2017 ◽  
Vol 12 (1) ◽  
pp. 386-392 ◽  
Author(s):  
Yinzhu Jiao ◽  
Yanli Yi ◽  
Liangshan Feng ◽  
Zhanxiang Sun ◽  
Ning Yang ◽  
...  

AbstractA 3-year field research was conducted to investigate the effect of four subsoiling methods on maize yield and water use efficiency. These four subsoiling methods included bulk subsoiling in autumn (BS), annual ridge subsoiling in autumn, annual furrow subsoiling in early summer, and interannual alternate zone subsoiling (AS), which were compared with rotary tillage in spring. The results suggested that the bulk density of the soil was alternately changed by AS, but AS had limited effect on the average water storage in the soil. Overall, soil tilled by BS and AS maintained a high water-holding capacity, which could stabilize the yield of maize under varying rainfall across different years. Maize under the AS subsoiling method maintained a relatively higher production capacity and water-use efficiency compared with those under the other three types of subsoiling methods.


2018 ◽  
Vol 6 (2) ◽  
pp. 63-66
Author(s):  
Milan Acharya

Conservation agriculture is resource conserving strategy for improving productivity and profitability of farming through efficient utilization of available resources with minimum foot print to the environment. Conservation Agriculture helps in carbon sequestration, soil erosion control, ground water recharge and moisture conservation. Conservation agriculture has been found to improve physical, chemical and biological properties of soil compared to conventional practices and ultimately helps in increasing nutrient and water use efficiency. Optimizing soil fertility and soil moisture simultaneously is possible through CA practice which ultimately increases resource use efficiency.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 63-66


Botany ◽  
2014 ◽  
Vol 92 (6) ◽  
pp. 443-451 ◽  
Author(s):  
Virginie M. Pointeau ◽  
Robert D. Guy

Amongst other traits, ideal poplar genotypes for afforestation programs would be fast growing and have high resource-use efficiencies. Black cottonwood (Populus trichocarpa Torr. & A. Gray) and balsam poplar (Populus balsamifera L.) are closely related species that together extend over much of the forested area of Canada. Within their respective ranges, however, black cottonwood attains much greater size than balsam poplar. Two populations of each species, each with three replicates of 9–10 genotypes, were grown from stem cuttings for 60 days in a greenhouse under long days to examine variation in biomass, height growth, net photosynthesis (A), stomatal conductance (gs), intrinsic water-use efficiency (A/gs), photosynthetic nitrogen-use efficiency (PNUE), leaf and stemwood 13C/12C isotope ratios (δ13C), stomatal density (Ds), and leaf amphistomaticity. There were no significant differences in A, PNUE, biomass, or height growth between species. On average, black cottonwood had lower gs and Ds, but higher A/gs and δ13C. Variation within provenances, in most traits, exceeded variation between species or provenances. δ13C and A/gs were highly correlated across all genotypes. Variation in A/gs seemed primarily related to gs, although positive correlations were found between δ13C and A in the P. balsamifera populations, which more generally met expectations for sink-driven differences in water-use efficiency. There is potential to identify fast-growing genotypes with relatively high use efficiencies for both water and nitrogen.


2015 ◽  
Vol 52 (4) ◽  
pp. 493-517 ◽  
Author(s):  
MEZEGEBU GETNET ◽  
MARTIN VAN ITTERSUM ◽  
HUIB HENGSDIJK ◽  
KATRIEN DESCHEEMAEKER

SUMMARYIn the Central Rift Valley (CRV) of Ethiopia, low productive cereal systems and a declining resource base call for options to increase crop productivity and improve resource use efficiency to meet the growing demand of food. We compiled and analysed a large amount of data from farmers’ fields (>10,000) and experimental data across the CRV from 2004–2009 to quantify yield gaps (Yg) between actual (average and best performing farmers) and experimental (water-limited potential (Yw)) yields of maize and wheat in homogenous farming zones (HFZs). Resource use efficiencies (nutrients and water) of maize and wheat were also analysed to assess spatial variation and scope for improvements. The average (2004–2009) yield gap of maize and wheat in the CRV ranged between 4.2 t ha−1 and 9.2 t ha−1, and 2.5 t ha−1 and 4.7 t ha−1, respectively, across farming zones. The yield gap was lowest in the Central lowlands, where Yw was also lowest, i.e. 6.5 t ha−1 for maize and 4.4 t ha−1 for wheat, compared with Yw in the Eastern highlands (11 t ha−1 for maize and 6.7 t ha−1 for wheat) and Western highlands (10.8 t ha−1 for maize and 5.7 t ha−1 for wheat). The actual nitrogen (N) and phosphorus (P) application in farmers’ fields was low, as about 46% of maize and 27% of wheat fields did not receive fertilizers, while the average applied mineral fertilizer rates across all farmers (2.6–16.5 kg N ha−1 and 2.2–17.3 kg P ha−1 across HFZs and crops) were far below the recommended rate. On average, the best performing farmers applied 8–20 kg N ha−1 and 5–21 kg P ha−1 ranging across HFZs and crops. Increasing N application to recommended rates had only a small effect on narrowing the yield gap under current farmers’ management. Therefore, the yield gap closure strongly depends on improving other aspects of crop management while paying attention to the interaction with nutrient management. Since rain water use efficiency (seasonal rainfall) of water-limited yields was 12–17.3 kg mm−1 for maize and 7.4–10.6 kg mm−1 for wheat and much higher than that of actual yields (2.7–4.3 kg mm−1 for maize and 2.3–3.5 kg mm−1 for wheat), improving the input use and crop management can increase water use efficiency. A large set of experimental and survey data enabled us to gain insight in the spatial and temporal variation in yield gaps and input rates and in differences between average and the best performing farmers.


2018 ◽  
Vol 76 (2) ◽  
pp. 115-130 ◽  
Author(s):  
G Guo ◽  
K Fang ◽  
J Li ◽  
HW Linderholm ◽  
D Li ◽  
...  

2011 ◽  
Vol 3 (9) ◽  
pp. 532-534
Author(s):  
Ganeshkumar D Rede ◽  
◽  
Dr. S. J. Kakde Dr. S. J. Kakde ◽  
Vanita Khobarkar

2016 ◽  
Vol 6 (1) ◽  
pp. 822-832
Author(s):  
Halim Mahmud Bhuyan ◽  
Most. Razina Ferdousi ◽  
Mohammad Toufiq Iqbal ◽  
Ahmed Khairul Hasan

Utilization of urea super granule (USG) with raised bed cultivation system for transplanted boro (winter, irrigated) rice production is a major concern now days. A field experiment was conducted in the chuadanga district of Bangladesh to compare the two cultivation methods: deep placement of USG on raised bed with boro rice, and prilled urea (PU) broadcasting in conventional planting. Results showed that USG in raised bed planting increased grain yields of transplanted boro rice by up to 18.18% over PU in conventional planting. Deep placement of USG in raised bed planting increased the number of panicle m-2, number of grains panicle-1 and 1000-grains weight of boro rice than the PU in conventional planting. Better plant growth was observed by deep placement of USG in raised bed planting compared to PU in conventional planting. Sterility percentage and weed infestation were lower on USG in raised bed planting compared to the PU in conventional planting methods. Forty seven percent irrigation water and application time could be saved by USG in raised bed planting than PU in conventional planting. Deep placement of USG in bed saved N fertilizer consumption over conventional planting. Water use efficiency for grain and biomass production was higher with deep placement of USG in bed planting than the PU broadcasting in conventional planting methods. Similarly, agronomic efficiency of N fertilizer by USG in bed planting was significantly higher than the PU broadcasting in conventional planting. This study concluded that deep placement of USG in raised bed planting for transplanted boro rice is a new approach to achieve fertilizer and water use efficiency as well as higher yield and less water input compared to existing agronomic practices in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document