scholarly journals Short-Term Effects of Different Straw Returning Methods on the Soil Physicochemical Properties and Quality Index in Dryland Farming in NE China

2020 ◽  
Vol 12 (7) ◽  
pp. 2631
Author(s):  
Wei Fan ◽  
Jinggui Wu ◽  
Sharaf Ahmed ◽  
Juan Hu ◽  
Xiaodong Chen ◽  
...  

A field experiment was designed to assess the impacts of various maize straw (stover) returning methods on the basic soil physicochemical properties and soil quality index in Jilin (NE China). The five treatments were no return of straw residues (CK), straw incorporated evenly into the soil using the crashing-ridging technique (EIS), straw mulching (SM), straw plowed into the soil (SP), and straw returned in granulated form (SG). Relative to the no straw return, EIS effectively reduced soil bulk density and penetration resistance, increased soil total organic carbon (TOC), macroaggregate-associated carbon content, and the accumulation of soil humus. Furthermore, EIS improved soil structure and soil aggregate stability and significantly increased the soil quality index. Among the various straw returning treatments, SM and SG significantly promoted soil macroaggregation and increased macroaggregate-associated carbon content by 23.69% and 21.70% at the soil surface, respectively (as compared with the control). Compared to SM, SP, and SG, EIS significantly enhanced the aliphaticity and hydrophobicity of soil organic carbon. These results suggested that EIS was the most efficient straw return mode to increase TOC and improve soil structure and fertility.

2019 ◽  
Vol 45 (2) ◽  
pp. 687 ◽  
Author(s):  
J. Rodrigo-Comino ◽  
A. Keshavarzi ◽  
A. Bagherzadeh ◽  
E.C. Brevik

Several methods have been used to model reality and explain soil pedogenesis and evolution. However, there is a lack of information about which soil properties truly condition soil quality indicators and indices particularly at the pedon scale and at different soil depths to be used in land management planning. Thus, the main goals of this research were: i) to assess differences in soil properties (particle size, saturation point, bulk density, soil organic carbon, pH and electrical conductivity) at different soil depths (0-30 and 30-60 cm); ii) to check their statistical correlation with soil quality indicators (CEC, total N, Olsen-P, available K, exchangeable Na, calcium carbonate equivalent, Fe, Mn, Zn, and Cu); and, iii) to elaborate a soil quality index and maps for each soil layer. To achieve this, forty-eight soil samples were analysed in the laboratory and subjected to statistical analyses by ANOVA, Spearman Rank coefficients and Principal Component Analyses. Finally, a soil quality index was developed based on indicators of sensitivity. The study was conducted in a semiarid catchment in northeast Iran with irrigated farming and well-documented land degradation issues. We found that: i) organic carbon and bulk density were not similar in the topsoil and subsoil; ii) calcium carbonate and sand content conditioned organic carbon content and bulk density; iii) organic carbon showed the highest correlations with soil quality indicators; iv) particle size conditioned cation-exchange capacity; and, v) heavy metals such as Mn and Cu were highly correlated with organic carbon due to non-suitable agricultural practices. Based on the communality analysis to map of soil quality, CEC, Mn, Zn, and Cu had the highest weights (≥0.11) at both depths, coinciding with the same level of relevance in the multivariate analysis. Exchangeable Na, CaCO3, and Fe had the lowest weights (≤0.1) and N, P, and K had intermediate weights (0.1- 0.11). In general, the map of the soil quality index shows a lower soil quality in the subsoil increment than in the topsoil.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1310
Author(s):  
Sneha Bandyopadhyay ◽  
Luís A. B. Novo ◽  
Marcin Pietrzykowski ◽  
Subodh Kumar Maiti

Research highlights: (1) Ecosystem development assessed in an afforested post-mining site. (2) Soil organic carbon (SOC) and total nitrogen (TN) stock reached close to the reference forest site after 25 years of afforestation. (3) Integrated mine soil quality index is developed to assess the reclamation success. Background and Objectives: Estimation of the mine soil quality is one of the most important criterions for evaluating the reclamation success and restoration of novel ecosystems of the post-industrial degraded lands. The aim of this long-term experiment was to investigate the influence of revegetation on Technosol (defined as anthropogenic soil resulted from reclamation of mine spoil materials) as the basic ecosystem development. Materials and Methods: A field study was carried out in the chronosequence afforested post-mining sites (5, 10, 25 years) and compared with natural forest site. We assessed the physicochemical properties and nutrient stock of mine soil and estimated general mine soil quality by using an integrated mine soil quality index (IMSQI). The studies were fully randomized in the chronosequence of afforested post-mining sites. Results: Nutrient dynamics and soil properties (physicochemical and biological) were recovered with the increase age of reclamation. Soil organic carbon (SOC) stock significantly increased from 9.11 Mg C ha−1 in 5 years to 41.37 Mg C ha−1 after 25 years of afforestation. Likewise, total nitrogen (TN) stock significantly increased from 1.06 Mg N ha−1 in 5 years to 4.45 Mg N ha−1 after 25 years of revegetation. Ecosystem carbon pool enhanced at a rate of 6.2 Mg C ha−1 year−1. A Principal Component Analysis (PCA)-based IMSQ index was employed to assess the reclamation success. The most influential properties controlling the health of reclaimed coal mine soil are fine earth fraction, moisture content, SOC and dehydrogenase activity. IMSQ index values are validated with vegetation characteristics. The estimated IMSQI ranged from 0.455 in 5-year-old (RMS5) to 0.746 in 25-year-old reclaimed dump (RMS25). Conclusions: A 25-year-old reclaimed dump having greater IMSQI (0.746) than reference forest soils (0.695) suggested the aptness of revegetation to retrieve soil quality and function in derelict mine land.


2017 ◽  
Vol 7 ◽  
Author(s):  
Julieta Mariana Rojas ◽  
Silvia Yanina Goytía ◽  
María Florencia Roldán ◽  
Natalia Andrea Mórtola ◽  
Romina Ingrid Romaniuk ◽  
...  

Soil quality (SQ) assessment is an important tool for monitoring the sustainability of production systems. The National Institute of Agricultural Technology (INTA) selected a minimum dataset of indicators (MDS) with the objective of generating a tool for diagnosis and monitoring of soils subject to land use changes. The MDS is composed of: total organic carbon, particulate organic carbon, total nitrogen, pH, bulk density and the wind erodible fraction. The objective of this work was to use the MDS and the Soil Quality Index (SQI) derived from it to describe the state of the soils intended for Cucurbit production in Chaco. The MDS was sufficiently sensitive to describe the state of the soils. The low and moderate SQ highlighted the need to incorporate soil conservation practices, given the low levels of organic matter and physical degradation. These practices would also contribute to the control of wind erosion, a process that is poorly managed in the area.<strong></strong>


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1435
Author(s):  
Xinhao Peng ◽  
Kenji Tamura ◽  
Maki Asano ◽  
Aya Takano ◽  
Minami Kawagoe ◽  
...  

The bare lands formed after volcanic eruptions provide an excellent opportunity to study the interactions between vegetation succession and soil formation. To explore the changes in soil physicochemical properties in the vegetation succession processes and the relationship between them, soil physicochemical properties of different volcanic ash accumulation on Miyake-jima Island were studied at different vegetation succession stages. The results showed that soil bulk density gradually decreased and that soil porosity, soil water content (SWC), pH, cation exchange capacity (CEC), soil total organic carbon (TOC), and total nitrogen (TN) increased significantly with vegetation succession. The physicochemical properties changes in the soil surface horizon were most obvious, and the deep soil accumulated a large amount of relatively stable soil carbon and nitrogen. The forest land formed a thicker organic matter horizon, accumulating more carbon and nitrogen than grassland, and the soil quality index (SQI) was higher than that of grassland and shrubland. In conclusion, our research indicates the significant change in soil physicochemical properties and the improvement in soil quality in the vegetation succession processes, emphasizing a significant relationship between vegetation succession and soil development in bare land.


2004 ◽  
Vol 4 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Giancarlo Barbiroli ◽  
Giovanni Casalicchio ◽  
Andrea Raggi

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1426
Author(s):  
Ahmed S. Abuzaid ◽  
Mohamed A. E. AbdelRahman ◽  
Mohamed E. Fadl ◽  
Antonio Scopa

Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for usingremote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI (0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security.


2021 ◽  
Vol 125 ◽  
pp. 107580
Author(s):  
Wuping Huang ◽  
Mingming Zong ◽  
Zexin Fan ◽  
Yuan Feng ◽  
Shiyu Li ◽  
...  

2015 ◽  
Vol 79 (6) ◽  
pp. 1629-1637 ◽  
Author(s):  
Vladimir Ivezić ◽  
Bal Ram Singh ◽  
Vlatka Gvozdić ◽  
Zdenko Lončarić

Sign in / Sign up

Export Citation Format

Share Document