scholarly journals Emulating Rotational Inertia of Synchronous Machines by a New Control Technique in Grid-Interactive Converters

2020 ◽  
Vol 12 (13) ◽  
pp. 5346 ◽  
Author(s):  
Meysam Saeedian ◽  
Bahram Pournazarian ◽  
S. Sajjad Seyedalipour ◽  
Bahman Eskandari ◽  
Edris Pouresmaeil

Integration of renewable energy sources (RESs) into power systems is growing due to eco-friendly concerns and ever-increasing electricity demand. Voltage source converters (VSCs) are the main interface between RESs and power grids, which have neither rotational inertia nor damping characteristics. Lack of these metrics make the power grid sensitive to frequency disturbances and thereby under frequency, to load shedding activation or even large-scale collapse. In this regard, the contribution of this paper is to develop a new control technique for VSCs that can provide virtual inertia and damping properties with the DC-link capacitors inhered in the DC-side of grid-tied VSCs. The applied VSC is controlled in the current controlled model, with the capability of injecting extra active power with the aim of frequency support during perturbations. The dynamics assessment of the proposed platform is derived in detail. It is revealed that the control scheme performs in a stable region even under weak-grid conditions. Finally, simulations are conducted in MATLAB to depict the efficacy and feasibility of the proposed method. The results show that frequency deviation is mitigated under step up/down changes in the demand, and the rate of change of frequency is improved by 47.37% compared to the case in which the synthetic inertia loop is canceled out.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1259 ◽  
Author(s):  
Yin Sun ◽  
E. de Jong ◽  
Xiongfei Wang ◽  
Dongsheng Yang ◽  
Frede Blaabjerg ◽  
...  

To prepare for the future high penetration level of renewable energy sources, the power grid’s technical boundaries/constraints for the correct operation of powerelectronics interfaced devices need to be further examined and defined. This paper investigates the challenge of integrating Voltage Source Converters (VSC) into low inertia power grids, where the system frequency can vary rapidly due to the low kinetic energy buffer available, which used to be provided by the rotational inertia of synchronous generators. The impact of rate of change of frequency (ROCOF) on the PLL dynamics and its subsequent influence on the VSC power stage output is explained. The Bonaire island network is presented as case study. The performance of the VSC is analyzed under a fast ROCOF event, which is triggered by a short circuit fault. A down-scaled experiment is used to validate the Bonaire island network simulation results. It shows that the phase angle error measured by the synchronous-reference frame phase-locked loop (SRF-PLL) is proportional to the slope of the ROCOF and inversely proportional to its controller integral gain constant.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2288
Author(s):  
Francisco Gonzalez-Longatt ◽  
Juan Manuel Roldan-Fernandez ◽  
Harold R. Chamorro ◽  
Santiago Arnaltes ◽  
Jose Luis Rodriguez-Amenedo

The shift to a sustainable energy future is becoming more reliant on large-scale deployment of renewable and distributed energy resources raising concerns about frequency stability. Rate of Change of Frequency (RoCoF) is necessary as a system inertia metric in order for network operators to perform control steps to preserve system operation. This paper presents in a straightforward and illustrative way several relevant aspects of the inertia response and RoCoF calculation that could help to understand and explain the implementation and results of inertial response controllers on power converter-based technologies. Qualitative explanations based on illustrative numerical experiments are used to cover the effects on the system frequency response of reduced rotational inertia in synchronous dominated power systems. One main contribution of this paper is making evident the importance of the governor action to avoid the synchronous machine taking active power from the system during the recovering period of kinetic energy in an under frequency event.


2021 ◽  
Vol 13 (14) ◽  
pp. 7622
Author(s):  
Md Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
Mohammad Ali Abido

A paradigm shift in power engineering transforms conventional fossil fuel-based power systems gradually into more sustainable and environmentally friendly systems due to more renewable energy source (RES) integration. However, the control structure of high-level RES integrated system becomes complex, and the total system inertia is reduced due to the removal of conventional synchronous generators. Thus, such a system poses serious frequency instabilities due to the high rate of change of frequency (RoCoF). To handle this frequency instability issue, this work proposes an optimized fractional-order proportional integral (FOPI) controller-based superconducting magnetic energy storage (SMES) approach. The proposed FOPI-based SMES technique to support virtual inertia is superior to and more robust than the conventional technique. The FOPI parameters are optimized using the particle swarm optimization (PSO) technique. The SMES is modeled and integrated into the optimally designed FOPI to support the virtual inertia of the system. Fluctuating RESs are considered to show the effectiveness of the proposed approach. Extensive time-domain simulations were carried out in MATLAB Simulink with different load and generation mismatch levels. Systems with different inertia levels were simulated to guarantee the frequency stability of the system with the proposed FOPI-based SMES control technique. Several performance indices, such as overshoot, undershoot, and settling time, were considered in the analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


2020 ◽  
Vol 34 (01) ◽  
pp. 630-637 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Terrence W.K. Mak ◽  
Pascal Van Hentenryck

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.


2020 ◽  
Author(s):  
Ana Fernández-Guillamón ◽  
Emilio Gómez-Lázaro ◽  
Eduard Muljadi ◽  
Ángel Molina-Garcia

Over recent decades, the penetration of renewable energy sources (RES), especially photovoltaic and wind power plants, has been promoted in most countries. However, as these both alternative sources have power electronics at the grid interface (inverters), they are electrically decoupled from the grid. Subsequently, stability and reliability of power systems are compromised. Inertia in power systems has been traditionally determined by considering all the rotating masses directly connected to the grid. Thus, as the penetration of renewable units increases, the inertia of the power system decreases due to the reduction of directly connected rotating machines. As a consequence, power systems require a new set of strategies to include these renewable sources. In fact, ‘hidden inertia,’ ‘synthetic inertia’ and ‘virtual inertia’ are terms currently used to represent an artificial inertia created by inverter control strategies of such renewable sources. This chapter reviews the inertia concept and proposes a method to estimate the rotational inertia in different parts of the world. In addition, an extensive discussion on wind and photovoltaic power plants and their contribution to inertia and power system stability is presented.


2021 ◽  
Author(s):  
Reza Ghaffari

Wind power generation is uncertain and intermittent accentuating variability. Currently in many power systems worldwide, the total generation-load unbalance caused by mismatch between forecast and actual wind power output is handled by automatic governor control and real-time 5-minute balancing markets, which are operated by the independent system operators for maintaining reliable operation of power systems. Mechanisms such as automatic governor control and real-time 5-minute balancing markets are in place to correct the mismatch between the load forecast and the actual load. They are not designed to address increased uncertainty and variability introduced by large-scale wind power or solar power generation expected in the future. Thus, large-scale wind power generation with increased uncertainty and intermittency causing variability poses a techno-economic challenge of sourcing least cost load balancing services (reserve).


2021 ◽  
Vol XXIII (4) ◽  
pp. 1-7
Author(s):  
Jelena Stojković ◽  
◽  
Predrag Stefanov

Integration of renewable energy sources (RES) is one of the key factors in the fight against climate change and they are becoming to take a larger share in electricity production. The systems with a high penetration of RES have small rotational inertia and are more vulnerable in terms of frequency stability. This paper proposes strategy for multistage fast frequency control (FFC) provided by converter-connected resources. They can quickly change the output active power and provide frequency support immediately after the disturbance during the period before that frequency reaches its nadir. The proposed control strategy uses only local measurements of the rate of change of frequency (RoCoF) and there is no need for complex telecommunications infrastructure. The multistage approach enables dispatched reserve to be proportional to the size of disturbance. RoCoF based FFC provides that more reserves would be dispatched in low-inertia areas that are more sensitive to disturbance and therefore enhance frequency stability. The proposed control strategy is validated on a test system of 3 coherent areas and the simulation results confirm that more reserve is dispatched in low-inertia areas that are more affected by disturbance.


2013 ◽  
Vol 2 (1) ◽  
pp. 78-100 ◽  
Author(s):  
Hassan Bevrani ◽  
Mehrdad Gholami ◽  
Neda Hajimohammadi

Economical harvesting of electrical energy on a large scale considering the environmental issues is a challenge. As a solution, Microgrids (MGs) promise to facilitate the widely penetration of renewable energy sources (RESs) and energy storage devices into the power systems, reduce system losses and greenhouse gas emissions, and increase the reliability of the electricity supply to the customers. Although the concept of MG is already established, the control strategies and energy management systems for MGs which cover power interchange, system stability, frequency and voltage regulation, active and reactive power control, islanding detection, grid synchronization, following contingencies and emergency conditions are still under development. Like a conventional power system, a Micro-grid (MG) needs emergency control and protection schemes to have secure and stable operation. Since MG can operate in both grid-connected and islanded mode, in addition to the control loops and protection schemes, extra issues must be considered. Transition between two operation modes requires an extra control plan to eliminate and stabilize transients due to mode changing. This paper presents an overview of the key issues and new challenges on emergency control and protection plans in the MG systems. The most important emergency control and protection schemes such as load shedding methods that have been presented over the past years are summarized.


Sign in / Sign up

Export Citation Format

Share Document