scholarly journals Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building

2020 ◽  
Vol 12 (15) ◽  
pp. 6071
Author(s):  
Nikola Pokorny ◽  
Tomáš Matuška

Photovoltaic–thermal collector generates electrical and thermal energy simultaneously from the same area. In this paper performance analysis of a potentially very promising application of a glazed photovoltaic–thermal collector for domestic hot water preparation in multifamily building is presented. Solar system in multifamily building can be installed on the roof or integrated in the façade of the building. The aim of this simulation study is to show difference of thermal and electrical performance between façade and roof installation of a glazed photovoltaic-thermal collectors at three European locations. Subsequently, this study shows benefit of photovoltaic-thermal collector installation in comparison with side-by-side installation of conventional system. For the purpose of simulation study, mathematical model of glazed photovoltaic-thermal collector has been experimentally validated and implemented into TRNSYS. A solar domestic hot water system with photovoltaic–thermal collectors generates more electrical and thermal energy in comparison with a conventional system across the whole of Europe for a particular installation in a multifamily building. The specific thermal yield of the photovoltaic–thermal system ranges between 352 and 582 kWh/m2. The photovoltaic–thermal system electric yield ranges between 63 and 149 kWh/m2. The increase in electricity production by the photovoltaic–thermal system varies from 19% to 32% in comparison with a conventional side-by-side system. The increase in thermal yield differs between the façade and roof alternatives. Photovoltaic-thermal system installation on the roof has higher thermal yield than conventional system and the increase of thermal yield ranges from 37% to 53%. The increase in thermal yield of façade photovoltaic-thermal system is significantly higher in comparison with a conventional system and ranges from 71% to 81%.

Author(s):  
Ru Yang ◽  
Yu-Ting Yen

There is rich solar energy in Taiwan, it also has a great developing potential for solar applications. Solar hot water is able to supply the domestic hot water, the heating load, and the driving energy for absorption cooing. In this paper, a computer simulation program for a multi-purpose solar hot water system providing hot water, winter heating and summer air-conditioning is established by TRNSYS program. Simulation study is done with varying parameters including collector area, storage capacity and type of collector (flat plate and evacuated tube). In order to study the system performance in Taiwan, system simulations are made under the climate data of three representative cities (Taipei in north, Taichung in central, and Kaohsiung in southern) of Taiwan. The results of the present study can provide important reference for the development of the multi-purpose solar hot water system.


Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Kathleen Lombardi

This paper presents thermal performance results of an experimental and numerical simulation study of a solar domestic hot water system (SDHW) for Canadian weather conditions. The experimental test setup includes two solar panels, a solar preheat tank, and an auxiliary propane-fired storage water heater, and an air handler unit for space heating. Experiments were performed on the SDHW system during a different season of the year, over the period March through October 2011 to assess the system performance for different solar gain and water draw schedules. Sunny, partly cloudy and cloudy conditions were explored. The test results were analysed in terms of solar fraction, solar efficiency, and the effects of thermosyphoning and stratification in the solar storage tank. Modelling and simulation of the solar thermal energy system using TRNSYS software was performed. The objective was to optimise key design parameters and to suggest an effective control strategy to maximise the heat extraction from solar collectors. The developed model was based on the experimental test setup. It was first adjusted and verified with the solar gain and water draw schedule experimental data. The results of the numerical simulations were then validated with experimental results obtained with other water draw schedule and weather conditions. Acceptable agreements between the predicted and measured values were obtained at this early stage of development. Further refinements in system and model validation are in progress in order to improve the accuracy of the predictions. Ultimately, as the final product of this investigation, this model will be used to predict the performance of solar domestic hot water and space heating systems in different Canadian locations, different operating conditions and water draw schedules.


2018 ◽  
Vol 171 ◽  
pp. 02002
Author(s):  
Elie Karam ◽  
Patrick Moukarzel ◽  
Maya Chamoun ◽  
Charbel Habchi ◽  
Charbel Bou-Mosleh

Due to global warming and the high toxic gas emissions of traditional power generation methods, renewable energy has become a very active topic in many applications. This study focuses on one versatile type of solar energy: Hybrid Photovoltaic Thermal System (hybrid PV/T). Hybrid PV/T combines both PV and thermal application and by doing this the efficiency of the system will increase by taking advantage of the temperature loss from PV module. The solar radiation and heat will be harnessed to deliver electricity and hot water simultaneously. In the present study a solar system is designed to recycle the heat and improve the temperature loss from PV module in order to supply both electricity and domestic hot water. The project was tested twice in Zouk Mosbeh - Lebanon; on May 18, 2016, and June 7, 2016. The average electrical efficiency was around 11.5% with an average electrical power output of 174.22 W, while with cooling, the average electrical efficiency reaches 11% with a power output of 200 W. The temperature increases by about 7 degrees Celsius from the inlet. The 1D conduction model is also performed in order to design the hybrid PV/T system.


2014 ◽  
Vol 126 ◽  
pp. 113-122 ◽  
Author(s):  
Wei Wu ◽  
Tian You ◽  
Baolong Wang ◽  
Wenxing Shi ◽  
Xianting Li

Sign in / Sign up

Export Citation Format

Share Document