scholarly journals Design of a Hybrid Photovoltaic Thermal System in Lebanon

2018 ◽  
Vol 171 ◽  
pp. 02002
Author(s):  
Elie Karam ◽  
Patrick Moukarzel ◽  
Maya Chamoun ◽  
Charbel Habchi ◽  
Charbel Bou-Mosleh

Due to global warming and the high toxic gas emissions of traditional power generation methods, renewable energy has become a very active topic in many applications. This study focuses on one versatile type of solar energy: Hybrid Photovoltaic Thermal System (hybrid PV/T). Hybrid PV/T combines both PV and thermal application and by doing this the efficiency of the system will increase by taking advantage of the temperature loss from PV module. The solar radiation and heat will be harnessed to deliver electricity and hot water simultaneously. In the present study a solar system is designed to recycle the heat and improve the temperature loss from PV module in order to supply both electricity and domestic hot water. The project was tested twice in Zouk Mosbeh - Lebanon; on May 18, 2016, and June 7, 2016. The average electrical efficiency was around 11.5% with an average electrical power output of 174.22 W, while with cooling, the average electrical efficiency reaches 11% with a power output of 200 W. The temperature increases by about 7 degrees Celsius from the inlet. The 1D conduction model is also performed in order to design the hybrid PV/T system.

Author(s):  
Marina Montero Carrero ◽  
Ward De Paepe ◽  
Jan Magnusson ◽  
Alessandro Parente ◽  
Svend Bram ◽  
...  

Despite the potential of micro Gas Turbines (mGTs) for Combined Heat and Power (CHP), this technology still poses limitations that curb its widespread adoption, especially for applications with a variable heat demand. In fact, whenever the user heat demand is low, mGTs are generally shut down. Otherwise, the high temperature exhaust gases have to be blown off and the resulting electrical efficiency is not high enough to sustain a profitable operation. If, instead of released, the heat in the exhaust gases is re-inserted in the cycle — by injecting hot water and transforming the mGT into a micro Humid Air Turbine (mHAT) — the electrical efficiency can be increased during periods of reduced heat demand, thus improving the economics of the technology. Although the enhanced performance of the mHAT cycle has been thoroughly investigated from a numerical point of view, results regarding the experimental behaviour of this technology remain scarce. In this paper, we present the experimental characterisation of the mHAT located at the Vrije Universiteit Brussel (VUB): based on the T100 mGT and equipped with a spray saturation tower. These are the first experimental results of such an engine working at nominal load with water injection. In addition, the control system of the unit has been modified so that it can operate either at constant electrical power output (the default setting) or at constant rotational speed. The latter option allowed to better assess the effect of water injection. Eperimental results demonstrate the patent benefits of water injection on mGT performance: at fixed rotational speed, the power output of the mHAT increases by more than 30%while the fuel consumption rises only by 11%. Overall, the electrical efficiency in wet operation increases by up to 4.2% absolute points. Future work will involve further optimising the current facility to reduce pressure losses in the air and water circuits. In addition, we will carry out transient simulations and experiments in order to further characterise the facility.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Guiqiang Li ◽  
Gang Pei ◽  
Ming Yang ◽  
Jie Ji

Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T) system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T) with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.


Author(s):  
Heather E. Dillon ◽  
Whitney G. Colella

Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer’s stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer’s stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4°C, lower than the manufacturer’s stated maximum hot water delivery temperature of 65°C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%.The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012.


2015 ◽  
Vol 12 (3) ◽  
Author(s):  
Heather E. Dillon ◽  
Whitney G. Colella

Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to 15 distinct 5 kW-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a 1 s sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long-term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer's stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer's stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 °C, lower than the manufacturer's stated maximum hot water delivery temperature of 65 °C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at rated value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at rated value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at rated value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS Unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a maximum decline in electric power output of approximately 18% was observed over a 500 h period in Jan. 2012.


2020 ◽  
Vol 4 (2) ◽  
pp. 22 ◽  
Author(s):  
Navid Khordehgah ◽  
Alina Żabnieńska-Góra ◽  
Hussam Jouhara

In this paper, a standalone photovoltaics-thermal solar panel is modelled using the TRNSYS simulation engine. Based on this, it was explored how such a system can be comprised of thermal and electrical storage components to provide electricity and hot water for a dwelling in a warm location in Europe. Furthermore, it was investigated how, by cooling the temperature of the solar cells, the electrical power output and efficiency of the panel was improved. The performance of the system was also studied, and the amount that the solar panel was able to convert the solar energy into electricity was investigated. Through this, we discovered that when the temperature of the panel was reduced, on average, by 20%, the electrical power output increased by nearly 12%. Moreover, it was demonstrated that the modelled system can provide hot water under different solar radiation conditions and during all seasons of the year.


Author(s):  
M. Sridharan ◽  
G. Jayaprakash

Abstract The performance of the solar photovoltaic (PV) module is more sensitive to its operating temperature. A PV module with a cooling system produces higher electrical power output than a PV module without a cooling system. In addition, the PV module with the integrated cooling system is capable of generating electrical and thermal energy simultaneously. Such an integrated (hybrid) system is termed as a solar photovoltaic thermal (PV/T) system. When two or more collectors connected in series as a mean to have higher output, then such a system is termed as series-connected PV/T water collectors. This study presents two fuzzy inference systems (FISs), namely, Mamdani and Sugeno, for predicting the performance of series-connected PV/T water collectors. The set of rules was framed individually for both models in a way to predict the power output of PV/T water collectors in an inaccurate manner. The predicted results by inference systems are compared with experimental values to check their prediction accuracies. The accuracy of such a proposed Mamdani and Sugeno FIS is 95.67% and 99.92%.


Author(s):  
Heather E. Dillon ◽  
Whitney G. Colella

Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer’s stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer’s stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4°C, lower than the manufacturer’s stated maximum hot water delivery temperature of 65°C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%.The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012.


Author(s):  
Y. Yang ◽  
J. Y. Chang ◽  
L. P. Wang

The photon transport and energy conversion of a near-field thermophotovoltaic (TPV) system with a selective emitter composed of alternate tungsten and alumina layers and a photovoltaic cell sandwiched by electrical contacts are theoretically investigated in this paper. Fluctuational electrodynamics along with the dyadic Green’s function for a multilayered structure is applied to calculate the spectral heat flux, and photocurrent generation and electrical power output are solved from the photon-coupled charge transport equations. The tungsten and alumina layer thicknesses are optimized to match the spectral heat flux with the bandgap of TPV cell. The spectral heat flux is much enhanced when plain tungsten emitter is replaced with the multilayer emitter due to the mechanism of surface plasmon polariton coupling in the tungsten thin film. In addition, the invalidity of effective medium theory to predict photon transport in the near field with multilayer emitters is discussed. Effects of a gold back reflector and indium tin oxide front coating with nanometer thickness, which could practically act as the electrodes to collect the photon-generated charges on the TPV cell, are explored. Conversion efficiency of 23.7% and electrical power output of 0.31 MW/m2 are achieved at 100 nm vacuum gap when the emitter and receiver are respectively at temperatures of 2000 K and 300 K.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1895
Author(s):  
Mohammad Uddin ◽  
Shane Alford ◽  
Syed Mahfuzul Aziz

This paper focuses on the energy generating capacity of polyvinylidene difluoride (PVDF) piezoelectric material through a number of prototype sensors with different geometric and loading characteristics. The effect of sensor configuration, surface area, dielectric thickness, aspect ratio, loading frequency and strain on electrical power output was investigated systematically. Results showed that parallel bimorph sensor was found to be the best energy harvester, with measured capacitance being reasonably acceptable. Power output increased with the increase of sensor’s surface area, loading frequency, and mechanical strain, but decreased with the increase of the sensor thickness. For all scenarios, sensors under flicking loading exhibited higher power output than that under bending. A widely used energy harvesting circuit had been utilized successfully to convert the AC signal to DC, but at the sacrifice of some losses in power output. This study provided a useful insight and experimental validation into the optimization process for an energy harvester based on human movement for future development.


Sign in / Sign up

Export Citation Format

Share Document