scholarly journals Numerical Modeling and Analysis of Concrete Slabs in Interaction with Subsoil

2020 ◽  
Vol 12 (23) ◽  
pp. 9868
Author(s):  
Radim Cajka ◽  
Zuzana Marcalikova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda

This article focuses on the analysis and numerical modeling of a concrete slab interacting with subsoil. This is a complex task for which a number of factors enter into the calculation, including the scope or dimension of the model, the non-linear solution approach, the choice of input parameters, and so forth. The aim of this article is to present one possible approach, which is based on a non-linear analysis and a three-dimensional computational model. Five slabs were chosen for modeling and analysis. The experiments involved slabs of 2000 × 2000 mm and a thickness of 150 mm, which were tested using specialized equipment. The slabs included a reinforced concrete slab, a standard concrete slab, and three fiber-reinforced concrete slabs. The fiber-reinforced slabs had fiber volume fractions of 0.32%, 0.64%, and 0.96%, which corresponded to fiber dosages of 25, 50, and 75 kg/m3. A reinforced concrete slab was chosen for the calibration model and the initial parametric study. The numerical modeling itself was based on a detailed evaluation of experiments, tests, and recommendations. The finite element method was used to solve the three-dimensional numerical model, where the fracture-plastic material of the model was used for concrete and fiber-reinforced concrete. In this paper, the performed numerical analyses are compared and evaluated, and recommendations are made for solving this problem.

Author(s):  
Vera V. Galishnikova ◽  
Alireza Heidari ◽  
Paschal C. Chiadighikaobi ◽  
Adegoke Adedapo Muritala ◽  
Dafe Aniekan Emiri

Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7152
Author(s):  
Zuzana Marcalikova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda ◽  
Radim Cajka

Research on the interaction between slabs and subsoil involves the field of materials engineering, concrete structures, and geotechnics. In the vast majority of cases, research focuses on only one of these areas, whereas for advanced study and computer simulations, detailed knowledge of the whole task is required. Among the new knowledge and information upon which this article focuses is the evaluation of subsoil stress using specialized pressure cells, along with detailed measurements of the deformation of a fiber-reinforced concrete slab. From a design point of view, this research is focused on the issue of the center of the cross section and the influence of eccentricity. Knowledge in this area is not yet comprehensively available for fiber-reinforced concrete slabs, where 2D deformation sections of the slab and 3D deformation surfaces of the slab are used in experiments. The experimental program includes a centrically and eccentrically loaded slab. These are structural elements that were tested on a specialized device. Both slabs had the same concrete recipe, with a dispersed reinforcement content of 25 kg/m3. The dimensions of the slab were 2000 × 2000 × 150 mm. Laboratory tests assessed compressive strength, the modulus of elasticity, splitting tensile strength, and bending tensile strength. Based on approximate data from the 3D deformation surfaces, an evaluation of the load-displacement diagrams for the center of the slab and for the center of eccentricity was performed. In conclusion, an overall evaluation and discussion of the results relies on experiments and the mechanical properties of fiber-reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document