scholarly journals An Eco-Efficiency Assessment of Bio-Based Diesel Substitutes: A Case Study in Thailand

2021 ◽  
Vol 13 (2) ◽  
pp. 576
Author(s):  
Napapat Permpool ◽  
Awais Mahmood ◽  
Hafiz Usman Ghani ◽  
Shabbir H. Gheewala

The development of new bio-based diesel substitutes can improve their compatibility with diesel engines. Nevertheless, for actual implementation, their environmental and economic performance needs to be studied. This study quantified the eco-efficiency of three bio-based diesels, viz., fatty acid methyl ester (FAME), partially hydrogenated FAME (H-FAME), and bio-hydrogenated diesel (BHD), to address the perspective of producers as well as policymakers for implementing the advanced diesel alternatives. The eco-efficiency was assessed as a ratio of life cycle costing as the economic indicator and three different environmental damages—human health, ecosystem quality, and resource availability. The eco-efficiency of FAME was the most favorable among all the potential substitutes with regard to human health and ecosystem quality, but the least favorable for resource availability impact. Even though BHD was beneficial in terms of life cycle costing, it was the least preferable when considering human health and ecosystem quality, though it performed the best for resource availability. H-FAME was also promising, in line with FAME. It is suggested that the technologies for BHD production should be improved, especially the catalyst used, which contributed greatly to environmental impacts and costs.

2020 ◽  
Vol 12 (8) ◽  
pp. 3252 ◽  
Author(s):  
Marianna Lena Kambanou

Despite the existence of many life cycle costing (LCC) methods, LCC is not widely adopted and LCC methods are usually further tailored by practitioners. Moreover, little is known about how practising LCC improves life cycle management (LCM) especially if LCM is considered emergent and constantly developing. In a manufacturing company, LCC is prescriptively introduced to improve LCM. In the first part, this study describes how various methodological choices and other aspects of practising LCC were the outcome of contestation and conformity with extant practices and not only the best way to fulfil the LCC’s objective. This contestation can even influence if LCC is adopted. In the second part of the research, the implications of practising LCC on LCM are explored. LCC is found to positively propel LCM in many ways e.g., by spreading the life cycle idea, but may lead to a narrower understanding of the term life cycle resulting in the sustainability focus of LCM being overridden. The article also discusses how the findings can be taken into consideration when researchers develop LCC methods and when industry practises LCC.


2018 ◽  
Vol 225 ◽  
pp. 05002
Author(s):  
Freselam Mulubrhan ◽  
Ainul Akmar Mokhtar ◽  
Masdi Muhammad

A sensitivity analysis is typically conducted to identify how sensitive the output is to changes in the input. In this paper, the use of sensitivity analysis in the fuzzy activity based life cycle costing (LCC) is shown. LCC is the most frequently used economic model for decision making that considers all costs in the life of a system or equipment. The sensitivity analysis is done by varying the interest rate and time 15% and 45%, respectively, to the left and right, and varying 25% of the maintenance and operation cost. It is found that the operation cost and the interest rate give a high impact on the final output of the LCC. A case study of pumps is used in this study.


2011 ◽  
Vol 3 (11) ◽  
pp. 2268-2288 ◽  
Author(s):  
Erwin M. Schau ◽  
Marzia Traverso ◽  
Annekatrin Lehmann ◽  
Matthias Finkbeiner

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4664
Author(s):  
Pedro L. Cruz ◽  
Diego Iribarren ◽  
Javier Dufour

Biobased liquid fuels are becoming an attractive alternative to replace, totally or partially, fossil ones in the medium term, mainly in aviation and long-distance transportation. In this regard, coprocessing biomass-derived feedstocks in conventional oil refineries might facilitate the transition from the current fossil-based transport to a biobased one. This article addresses the economic and environmental feasibility of such a coprocessing strategy. The biomass-based feedstocks considered include bio-oil and char from the fast pyrolysis of lignocellulosic biomass, which are coprocessed in fluid catalytic cracking (FCC), hydrocracking, and/or cogasification units. The assessment was based on the standardized concept of eco-efficiency, which relates the environmental and economic performances of a system following a life-cycle approach. Data from a complete simulation of the refinery process, from raw materials to products, were used to perform a life cycle costing and eco-efficiency assessment of alternative configurations of the coprocessing strategy, which were benchmarked against the conventional fossil refinery system. Among other relevant results, the eco-efficiency related to the system’s carbon footprint was found to improve when considering coprocessing in the hydrocracking unit, while coprocessing in FCC generally worsens the eco-efficiency score. Overall, it is concluded that coprocessing biomass-based feedstock in conventional crude oil refineries could be an eco-efficient energy solution, which requires a careful choice of the units where biofeedstock is fed.


2018 ◽  
Author(s):  
Vojtěch Biolek ◽  
Tomáš Hanák

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1787
Author(s):  
Orlando Durán ◽  
Fabián Orellana ◽  
Pablo Perez ◽  
Tamara Hidalgo

A physical asset’s health is the consequence of a series of factors, ranging from the characteristics of the location where it operates to the care it is submitted to. These characteristics can influence the durability or the horizon of the useful life of any equipment, as well as determine its operational performance and its failure rates in the future. Therefore, the assessment of the influence of asset health on Life Cycle Costs is a compelling need. This paper proposes the incorporation of a factor that reflects the projected behavior of an asset’s health index into its corresponding Life Cycle Costing (LCC) model. This allows cost estimates to be made more realistic and LCC models to be operated more accurately. As a way of validating this proposal, a case study is shown. The methodology proposed in this case study was applied in a real case, considering an LNG facility located in central Chile. In addition, sensitivity studies and comparisons with the results obtained by a traditional Life Cycle Costing model are included. The results show the usefulness of incorporating asset health aspects into the Life Cycle Costing of physical assets.


2017 ◽  
Vol 4 (8) ◽  
pp. 1705-1721 ◽  
Author(s):  
Michael P. Tsang ◽  
Dingsheng Li ◽  
Kendra L. Garner ◽  
Arturo A. Keller ◽  
Sangwon Suh ◽  
...  

A dynamic life cycle impact assessment model demonstrates a non-constant intake fraction of inhaled nano-TiO2 as total emissions changes.


Sign in / Sign up

Export Citation Format

Share Document