scholarly journals Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review

2021 ◽  
Vol 13 (5) ◽  
pp. 2495
Author(s):  
Rong Xie ◽  
Muyan Chen ◽  
Weihuang Liu ◽  
Hongfei Jian ◽  
Yanjun Shi

Turbomachinery from a life cycle perspective involves sustainability-oriented development activities such as design, production, and operation. Digital Twin is a technology with great potential for improving turbomachinery, which has a high volume of investment and a long lifespan. This study presents a general framework with different digital twin enabling technologies for the turbomachinery life cycle, including the design phase, experimental phase, manufacturing and assembly phase, operation and maintenance phase, and recycle phase. The existing digital twin and turbomachinery are briefly reviewed. New digital twin technologies are discussed, including modelling, simulation, sensors, Industrial Internet of Things, big data, and AI technologies. Finally, the major challenges and opportunities of DT for turbomachinery are discussed.

Author(s):  
Daniele Catelani

Simulation has been a competitive differentiator for engineering-driven businesses, available at all stages of the development process and lifecycle, used by the various domains within an organization, not necessarily simulation experts. It requires discipline integration, scalability, reduced-order model, and democratization. The concept of digital transformation involves new approaches for data and lifecycle management, the understanding of the digital thread, digital twin, predictive and cognitive capabilities, including improvement of model complexity, integration of physics, increase of knowledge. These trends require bringing the physical and virtual worlds closer together and also the adoption of cyber-physical model at all stages of design, production, and operation. To overcome the drawback of simulation and the need to balance the computational effort with accuracy and efficiency, new modelization strategies are adopted with ML and AI, which use a combination of virtual and physical data for training ROM, with an order of magnitude faster than the multiphysics one.


Author(s):  
V N Blinov ◽  
S S Valeev ◽  
N V Kondratyeva ◽  
R R Karimov ◽  
A S Kovtunenko ◽  
...  

The application of predictive analytics in the design, production and operation to achieve the efficiency of the life cycle of complex technical systems is discussed. A predictive model of information support for the life cycle of a microsatellite propulsion system based on a neural network system is proposed. The predictive model can solve the problem of estimating fuel consumption, diagnosing and detecting possible failures of a small propulsion system.


2021 ◽  
Vol 11 (12) ◽  
pp. 5519
Author(s):  
Rui Carvalho ◽  
Alberto Rodrigues da Silva

Sustainable development was defined by the UN in 1987 as development that meets the needs of the present without compromising the ability of future generations to meet their own needs, and this is a core concept in this paper. This work acknowledges the three dimensions of sustainability, i.e., economic, social, and environmental, but its focus is on this last one. A digital twin (DT) is frequently described as a physical entity with a virtual counterpart, and the data, connections between the two, implying the existence of connectors and blocks for efficient and effective data communication. This paper provides a meta systematic literature review (SLR) (i.e., an SLR of SLRs) regarding the sustainability requirements of DT-based systems. Numerous papers on the subject of DT were also selected because they cited the analyzed SLRs and were considered relevant to the purposes of this research. From the selection and analysis of 29 papers, several limitations and challenges were identified: the perceived benefits of DTs are not clearly understood; DTs across the product life cycle or the DT life cycle are not sufficiently studied; it is not clear how DTs can contribute to reducing costs or supporting decision-making; technical implementation of DTs must be improved and better integrated in the context of the IoT; the level of fidelity of DTs is not entirely evaluated in terms of their parameters, accuracy, and level of abstraction; and the ownership of data stored within DTs should be better understood. Furthermore, from our research, it was not possible to find a paper discussing DTs only in regard to environmental sustainability.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


Author(s):  
Jean‐Baptiste E. Thomas ◽  
Rajib Sinha ◽  
Åsa Strand ◽  
Tore Söderqvist ◽  
Johanna Stadmark ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1036
Author(s):  
Siri Willskytt

Consumable products have received less attention in the circular economy (CE), particularly in regard to the design of resource-efficient products. This literature review investigates the extent to which existing design guidelines for resource-efficient products are applicable to consumables. This analysis is divided into two parts. The first investigates the extent to which general product-design guidelines (i.e., applicable to both durables and consumables) are applicable to consumables. This analysis also scrutinizes the type of recommendations presented by the ecodesign and circular product design, to investigate the novel aspects of the CE in product design. The second analysis examines the type of design considerations the literature on product-type specific design guidelines recommends for specific consumables and whether such guidelines are transferable. The analysis of general guidelines showed that, although guidelines are intended to be general and applicable to many types of products, their applicability to consumable products is limited. Less than half of their recommendations can be applied to consumables. The analysis also identified several design considerations that are transferable between product-specific design guidelines. This paper shows the importance of the life-cycle perspective in product design, to maximize the opportunities to improve consumables.


2020 ◽  
pp. 125087
Author(s):  
Engin Karal ◽  
Mehmet Ali Kucuker ◽  
Burak Demirel ◽  
Nadim K. Copty ◽  
Kerstin Kuchta

Sign in / Sign up

Export Citation Format

Share Document