scholarly journals The Common Approaches of Nitrogen Removal in Bioretention System

2021 ◽  
Vol 13 (5) ◽  
pp. 2575
Author(s):  
Wafaa Ali ◽  
Husna Takaijudin ◽  
Khamaruzaman Wan Yusof ◽  
Manal Osman ◽  
Abdurrasheed Sa’id Abdurrasheed

Bioretention is considered one of the best management practices (BMPS) for managing stormwater quality and quantity. The bioretention system has proven good performance in removing total suspended solids, oil, and heavy metals. The nitrogen (N) removal efficiency of the bioretention system is insufficient, however, due to the complex forms of nitrogen. Therefore, this paper aims to review recent enhancement approaches to nitrogen (N) removal and to discuss the factors influencing bioretention efficiency. To improve bioretention efficiency, several factors should be considered when designing bioretention systems, including nitrogen concentration, climate factors, and hydrological factors. Further, soil and plant selection should be appropriate for environmental conditions. Three design improvement approaches have been reviewed. The first is the inclusion of a saturated zone (SZ), which has been used widely. The SZ is shown to have the best performance in nitrogen removal. The second approach (which is less popular) is the usage of additives in the form of a mixture with soil media or as a separated layer. This concept is intended to be applied in tropical regions with wet soil conditions and a short dry period. The third approach combines the previous two approaches (enhanced filter media and applying a SZ). This approach is more efficient and has recently attracted more attention. This study suggests that further studies on the third approach should be carried out. Applying amendment material through filter media and integrating it with SZ provides appropriate conditions to complete the nitrogen cycle. This approach is considered a promising method to enhance nitrogen removal. In general, the bioretention system offers a promising tool for improving stormwater quality.

Author(s):  
Kangmao He ◽  
Huapeng Qin ◽  
Fan Wang ◽  
Wei Ding ◽  
Yixiang Yin

Adding a submerged zone (SZ) is deemed to promote denitrification during dry periods and thus improve NO3--N removal efficiency of a bioretention system. However, few studies had investigated the variation of nitrogen concentration in the SZ during dry periods and evaluated the effect of the variation on nitrogen removal of the bioretention system. Based on the experiment in a mesocosm bioretetion system with SZ, this study investigated the variation of nitrogen concentration of the system under 17 consecutive cycles of wet and dry alternation with varied rainfall amount, influent nitrogen concentration and antecedent dry periods (ADP). The results indicated that (1) during the dry periods, NH4+-N concentrations in SZ showed an exponential decline trend, decreasing by 50% in 12.9 ± 7.3 hours; while NO3--N concentrations showed an inverse S-shape decline trend, decreasing by 50% in 18.8 ± 6.4 hours; (2) during the wet periods, NO3--N concentration in the effluent showed an S-shape upward trend; and at the early stage of the wet periods, the concentration was relatively low and significantly correlated with ADP, while the corresponding volume of the effluent was significantly correlated with the SZ depth; (3) in the whole experiment, the contribution of nitrogen decrease in SZ during dry periods to NH4+-N and NO3--N removal accounted for 12% and 92%, respectively; and the decrease of NO3--N in SZ during the dry period was correlated with the influent concentration in the wet period and the length of the dry period.


2021 ◽  
Vol 83 (4) ◽  
pp. 75-90
Author(s):  
Awang Nasrizal Awang Ali ◽  
Nurmin Bolong ◽  
Nazaruddin Abdul Taha

The stormwater management practices have changed from conveyance-oriented to storage-oriented, as part of the Best Management Practices (BMPs). Still, uncontrolled development increases potential pollutants in the stormwater, which conveys into a water body or river. Continuous improvements in the filtration mechanism would complement stormwater management. For the past decades, there is progress in applying granular filter media for stormwater quality improvement. However, the reports were not systematically reviewed. In this paper, the recent five years research that utilizes granular filter media for improving stormwater quality was retrieved and reviewed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was referred to, where Scopus and Web of Sciences, two primary journal databases, were used. Initially, keywords searching strings have resulted in 467 articles, which were further screened. Four themes have been formed: stormwater management, stormwater characteristics, separation mechanisms, and future perspectives. Next, two sub-themes and two sub-sub-themes were further established. Then, 65 articles were included manually to complement the themes developed to explore the potential agro-industrial wastes as sustainable filter media. Therefore, this review has proven that the relatively inexpensive and renewable resources from the agro-industrial wastes can remove pollutants efficiently from the stormwater. Four main criteria affecting filter media performances are also highlighted, including the grain sizes of the media, media bed configuration, hydraulic loading rate, and the suspended solids concentration. Further study on these variables can be beneficial to explore the impact of utilizing agro-based media in stormwater filtration.


2019 ◽  
Vol 11 (19) ◽  
pp. 5415 ◽  
Author(s):  
Manal Osman ◽  
Khamaruzaman Wan Yusof ◽  
Husna Takaijudin ◽  
Hui Weng Goh ◽  
Marlinda Abdul Malek ◽  
...  

One of the best management practices (BMPs) for stormwater quality and quantity control is a bioretention system. The removal efficiency of different pollutants under this system is generally satisfactory, except for nitrogen which is deficient in certain bioretention systems. Nitrogen has a complex biogeochemical cycle, and thus the removal processes of nitrogen are typically slower than other pollutants. This study summarizes recent studies that have focused on nitrogen removal for urban stormwater runoff and discusses the latest advances in bioretention systems. The performance, influencing factors, and design enhancements are comprehensively reviewed in this paper. The review of current literature reveals that a bioretention system shows great promise due to its ability to remove nitrogen from stormwater runoff. Combining nitrification and denitrification zones with the addition of a carbon source and selecting different plant species promote nitrogen removal. Nevertheless, more studies on nitrogen transformations in a bioretention system and the relationships between different design factors need to be undertaken.


2006 ◽  
Vol 16 (3) ◽  
pp. 408-412 ◽  
Author(s):  
Nicolas Tremblay ◽  
Carl Bélec

Weather is the primary driver of both plant growth and soil conditions. As a consequence of unpredictable weather effects on crop requirements, more inputs are being applied as an insurance policy. Best management practices (BMPs) are therefore about using minimal input for maximal return in a context of unpredictable weather events. This paper proposes a set of complementary actions and tools as BMP for nitrogen (N) fertilization of vegetable crops: 1) planning from an N budget, 2) reference plot establishment, and 3) crop sensing prior to in-season N application based on a saturation index related to N requirement.


2010 ◽  
Vol 18 (NA) ◽  
pp. 159-173 ◽  
Author(s):  
Audrey Roy-Poirier ◽  
Pascale Champagne ◽  
Yves Filion

Phosphorus is a water pollutant of concern around the world as it limits the productivity of most freshwater systems which can undergo eutrophication under high phosphorus inputs. The importance of treating stormwater as part of an integrated phosphorus pollution management plan is now recognized. Bioretention systems are urban stormwater best management practices (BMPs) that rely on terrestrial ecosystem functions to retain storm flows and reduce pollutant loads. Bioretention has shown great potential for stormwater quantity and quality control. However, phosphorus removal has been inconsistent in bioretention systems, with phosphorus leaching observed in some systems. Numerical models can be used to predict the performance of bioretention systems under various conditions and loadings. The aim of this paper is to identify and characterize bioretention phosphorus cycling processes, with a particular focus on process modelling. Both soluble and particulate phosphorus forms are expected in significant proportions in bioretention system inflows. Sorption mechanisms are expected to dominate soluble phosphorus cycling, while particulate phosphorus transport occurs mainly through sedimentation. Vegetative uptake, mineralization, and immobilization are also known to play a role in the cycling of phosphorus; however, data is lacking to assess their importance. There is a need for simple mathematical equations to represent dissolution and precipitation reactions in bioretention systems. More research is also needed to characterize the rates of colloidal capture and mobilization within soils. Finally, approaches used to model phosphorus transport in systems similar to bioretention are not applicable to bioretention system modelling. This reinforces the need for the development of a bioretention phosphorus transport model.


2007 ◽  
Vol 544-545 ◽  
pp. 573-576
Author(s):  
Sung Won Kang ◽  
Byung Cheol Lee ◽  
Young Im Kim ◽  
Sang Leen Yun ◽  
Yong Jin Park ◽  
...  

Pollutants such as heavy metals and PAHs (Polynuclear Aromatic Hydrocarbons) in stormwater runoff are a major problem in urban areas because these pollutants are discharged directly, in most cases without any treatment, into the receiving environments like river and lake. Since many of the pollutants are associated with suspended particulate materials in stormwater, SS (suspended solids) is of acknowledged importance in stormwater runoff treatment by BMPs (best management practices). Filtration, which is commonly used for removing particulate matter in stormwater structural BMPs, depends on various factors (e.g., filter media size, flow rate, bed depth, filter surface properties, etc). Especially, the characteristics of filter media are important factor affecting removal efficiency of pollutants and replacement period of filter media in filtration performance. In this study, EPM (expanded polypropylene media) as a filter media was manufactured at different expansion ratios (i.e., 5, 10, 15 times) and tested in the up-flow filtration for removing pollutants in urban stormwater runoff. The specific surface area of EPM10, EPM15, EPM30, EPM54 was 0.760 m2/g, 0.799 m2/g, 0.812 m2/g, 0.845 m2/g, respectively. The SS removal efficiency (64.1%) by EPM media was higher than that (44.2%) by sand media. In case of EPM10 media, it took 175min of removal rate of filtration system to be approached under 50% and EPM15 media was spent 110min. However, the SS removal efficiency of EPM15 was over 10% higher than that of EPM10. The CODCr removal efficiency of EPM media was also increased with increasing expansion rate. The experimental results in this work show that pollutant removal efficiency by EPM media was increased with increasing expansion ratio but replacement period of media was decreased. EPM media are expected to adsorb non-biological organics like PAHs owing to its hydrophobicity.


1994 ◽  
Vol 18 (4) ◽  
pp. 163-167
Author(s):  
Tim O. Adams ◽  
Donal D. Hook

Abstract One-hundred-seventy-seven harvested sites in South Carolina were evaluated for compliance with Best Management Practices (BMPs). South Carolina Forestry Commission (SCFC)foresters evaluated the roads, road stream crossings, streamside management zones, harvest operations, and log decks. In addition, each site was evaluated for overall BMP compliance, which was based on the level of both off-site and on-site impacts. Overall BMP compliance was 84.7%. Compliance was highest for log decks (97.7%), roads (92.0%), and harvest operations (89.8%) and lowest for streamside management zones (72.4%) and road stream crossings (41.7%). Nineteen variables were analyzed to determine their influence on BMP compliance. Two variables were responsible for the 27 sites with inadequate ratings: (1) the presence of perennial and intermittent streams, and (2) logging under wet soil conditions. Compliance did not differ significantly among landowner categories or physiographic regions. To improve BMP compliance, landowners should identify sensitive sites and take adequate steps to protect them during timber harvesting. South. J. Appl. For. 18(4):163-167.


Author(s):  
Julie E. Kendall ◽  
Kenneth E. Kendall

It is often assumed in the MIS literature and in practice that only large organizations are capable of transmitting culture and information technology (IT) to small and medium enterprises (SMEs). The authors use the framework provided by the metaphor of the third space as proposed by Bhabha (1994 and 1996) to gain insights that refute these popular misconceptions, by demonstrating that dominant powers and former colonies exchange cultural artifacts such as information and communication technologies (ICTs) and best management practices in mutually influential ways. The authors’ research furthers their understanding of the initial relationships (termed mimicry) between small and medium-sized nonprofit theatres and commercial productions (symbolized by Broadway productions) as well as their current and future exchanges facilitated by hybridity in the third space. The authors discover that both groups possess unique cultural competencies that open the door to using Web 2.0 technologies for staging and promoting productions, building relationships with theatre patrons; and numerous other management issues where their expertise can be usefully exchanged.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 876 ◽  
Author(s):  
Kangmao He ◽  
Huapeng Qin ◽  
Fan Wang ◽  
Wei Ding ◽  
Yixiang Yin

Adding a submerged zone (SZ) is deemed to promote denitrification during dry periods and thus improve NO3− removal efficiency of a bioretention system. However, few studies had investigated the variation of nitrogen concentration in the SZ during dry periods and evaluated the effect of the variation on nitrogen removal of the bioretention system. Based on the experiment in a mesocosm bioretetion system with SZ, this study investigated the variation of nitrogen concentration of the system under 17 consecutive cycles of wet and dry alternation with varied rainfall amount, influent nitrogen concentration and antecedent dry periods (ADP). The results indicated that (1) during the dry periods, NH4+ concentrations in SZ showed an exponential decline trend, decreasing by 50% in 12.9 ± 7.3 h; while NO3− concentrations showed an inverse S-shape declining trend, decreasing by 50% in 18.8 ± 6.4 h; (2) during the wet periods, NO3− concentration in the effluent showed an S-shape upward trend; and at the early stage of the wet periods, the concentration was relatively low and significantly correlated with ADP, while the corresponding volume of the effluent was significantly correlated with the SZ depth; (3) in the whole experiment, the contribution of nitrogen decrease in SZ during dry periods to NH4+ and NO3− removal accounted for 12% and 92%, respectively; and the decrease of NO3− in SZ during the dry period was correlated with the influent concentration in the wet period and the length of the dry period.


Sign in / Sign up

Export Citation Format

Share Document