scholarly journals Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production

2021 ◽  
Vol 13 (7) ◽  
pp. 4044
Author(s):  
Hafiz Shahzad Ahmad ◽  
Muhammad Imran ◽  
Fiaz Ahmad ◽  
Shah Rukh ◽  
Rao Muhammad Ikram ◽  
...  

The socio-economic development of a country is highly dependent on water availability. Nowadays, increasing water scarcity is a major global challenge. Continuing improvements in water-use efficiency are essential for cotton production sustainability. Reduced irrigation in cotton could be a solution to water shortage in the arid climate without compromising the cotton yield. Therefore, a two-year field study was conducted to assess the effect of two levels of irrigation i.e., 50% and 100% of available water content (AWC) on the yield of four cotton genotypes (CIM-678, CIM-343, CRIS-613, and CYTO-510). The maximum seed cotton yield was observed in CIM-678, which was 2.31 and 2.46 Mg ha−1 under 100% AWC during 2018 and 2019, respectively, and was non-significantly reduced by 7.7 and 8.94%, owing to deficit irrigation. The maximum water use efficiency (WUE) of 0.55 and 0.64 Kg ha−1 mm−1 was observed under 50% AWC in CIM-678, which was significantly higher than WUE at 100% AWC during both years. Leaf area index and physiological parameters such as photosynthesis rate, transpiration rate, and stomatal conductance were not significantly affected by deficit irrigation. So, it was concluded that the reduced irrigation technique performed well without significant yield loss, improve WUE, and saved 37 cm of water that could be used for other crops or to increase the area of the cotton crop.

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

Root morphology and its components’ behavior could show a considerable response under multiple water application points per plant to help the ultimate effect of fruit yield and fruit quality. In this study, a comparison of a single emitter per plant was made with two, three, and four emitters per plant under drip irrigation and two irrigation levels (full irrigation 100% and deficit irrigation 75% of crop evapotranspiration) to investigate their effects on physiological parameters, root, yield, and their associated components for potted cherry tomato under greenhouse conditions in Jiangsu-China. The experimental results showed that the plants cultivated in the spring-summer planting season showed significantly higher results than the fall-winter planting season due to low temperatures in the fall-winter planting season. However, the response root length, root average diameter, root dry mass, leaf area index, photosynthetic rate, transpiration rate, fruit unit fresh weight, the number of fruits, and pH were increased by multiple emitters per plant over a single emitter per plant, but total soluble solids decreased. Besides, a decreasing trend was observed by deficit irrigation for both planting seasons, and vice versa for the case for tomato total soluble solids. Due to an increase in measured parameters for multiple emitters per plant over a single emitter per plant, the yield, water use efficiency, and water use efficiency biomass significantly increased by 18.1%, 17.6%, and 15.1%, respectively. The deficit irrigation caused a decrease in the yield of 5% and an increase in water use efficiency and water use efficiency biomass of 21.4% and 22.9%, respectively. Two, three, and four emitters per plant had no significant effects, and the obtained results were similar. Considering the root morphology, yield, water use efficiency, water use efficiency biomass, and fruit geometry and quality, two emitters per plant with deficit irrigation are recommended for potted cherry tomato under greenhouse conditions. The explanation for the increased biomass production of the plant, yield, and water use efficiency is that two emitters per plant (increased emitter density) reduced drought stress to the roots, causing increased root morphology and leaf area index and finally promoting the plant’s photosynthetic activity.


2020 ◽  
Vol 63 (1) ◽  
pp. 105-115
Author(s):  
Srinivasulu Ale ◽  
Nina Omani ◽  
Sushil K. Himanshu ◽  
James P. Bordovsky ◽  
Kelly R. Thorp ◽  
...  

HighlightsIrrigation water use efficiency was consistently higher under deficit irrigation as compared to full irrigation.Irrigation water use was always less than the annual allowable pumping limit under deficit irrigation.The first/second week of September was ideal for terminating irrigation under full/deficit irrigation in normal years.Ideal irrigation termination periods in wet/dry years were a week earlier/later than those in normal years.Abstract. Cotton ( L.) production in the Texas High Plains (THP) region relies heavily on irrigation with groundwater from the underlying Ogallala Aquifer. However, rapidly declining groundwater levels in the aquifer and increasing pumping costs pose challenges for sustainability of irrigated cotton production in this region. Adoption of efficient irrigation strategies, such as terminating irrigation at an appropriate time in the growing season, could enable producers to increase irrigation water use efficiency (IWUE) while maintaining desired yield goals. The objective of this study was to determine optimum irrigation termination periods for cotton production in the THP under full and deficit irrigation conditions using the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Cotton model, which was evaluated in a prior study in the THP using measured data from an IWUE field experiment at Halfway, Texas. The treatment factors in the field experiment included irrigation capacities of 0 mm d-1 (low, L), 3.2 mm d-1 (medium, M), and 6.4 mm d-1 (high, H), applied during the vegetative, reproductive, and maturation growth stages. This study focused on a full irrigation (HHH) treatment and three deficit irrigation (LMH, LHM, and LMM) treatments. Eight irrigation termination dates with a one-week interval between 15 August and 30 September were simulated, and the impact of irrigation termination date on cotton IWUE and seed cotton yield were studied by dividing the 39-year (1978 to 2016) simulation period into dry, normal, and wet years based on the precipitation received from 1 April to the simulated irrigation termination date. Results indicated that the simulated IWUE was consistently higher under the LHM, LMH, and LMM treatments when compared to the HHH treatment. Based on the simulated average seed cotton yield and IWUE, optimum irrigation termination periods for cotton were found to be the first week of September (about 118 days after planting, DAP) for the HHH and LMH treatments and the second week of September (125 DAP) for the LHM and LMM treatments in normal years. In wet years, optimum irrigation termination periods were a week earlier than those in normal years and a week later in dry years for the HHH, LHM, and LMM treatments. For the LMH treatment, the optimum irrigation termination period in wet years was the same as that in normal years and two weeks later in dry years. The results from this study along with field-specific, late-season information will assist THP cotton producers in making appropriate irrigation termination decisions for improving economic productivity of the Ogallala Aquifer and thereby ensuring water security for agriculture. However, the recommendations from this study should be used with caution, as the optimum irrigation termination periods could potentially change with changes in cultivar characteristics, soil type, climate, and, crop management practices. Keywords: CROPGRO-Cotton, Deficit irrigation, DSSAT, Full irrigation, Irrigation water use efficiency, Seed cotton yield.


2017 ◽  
Vol 60 (6) ◽  
pp. 2053-2065 ◽  
Author(s):  
Liwang Ma ◽  
Zhiming Qi ◽  
Yanjun Shen ◽  
Liang He ◽  
Shouhua Xu ◽  
...  

Abstract. Deficit irrigation has been shown to increase crop water use efficiency (WUE) under certain conditions, even though the yield is slightly reduced. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated with measured data from a large weighing lysimeter from 1998 to 2003 at the Yucheng Experimental Station in the North China Plain for daily evapotranspiration (ET), soil water storage (0-120 cm), leaf area index (LAI), aboveground biomass, and grain yield. The calibrated model was then used to explore crop responses to ET-based irrigation management using weather data from 1958 to 2015 and identify the most suitable ET-based irrigation schedules for the area. Irrigation amount was determined by constraining irrigation to a percentage of potential crop ET (40%, 60%, 80%, and 100% ETc) at the various growth stages of wheat [planting to before winter dormancy (P-D), green up to booting (G-B), booting to flowering (B-F), and flowering to maturity (F-M)] and of maize [planting to silking (P-S) and silking to maturity (S-M)], subject to seasonal water availability limits of 100/50, 200/100, 300/150, and 400/200 mm and no water limit for wheat/maize seasons, respectively. In general, wheat was more responsive to irrigation than maize, while greater influence of weather variation was simulated on maize than on wheat. For wheat with seasonal water limits, the highest average WUE was simulated with the highest targeted ETc levels at both the G-B and B-F stages and lower targeted ETc levels at the P-D and F-M stages. However, the highest average grain yield was simulated with the highest targeted ETc levels at all four growth stages for no water limit and the 400 mm water limit, or at both the G-B and B-F stages for the 300 and 200 mm water limits. For maize, lower targeted ETc levels after silking did not significantly affect maize production due to the high season rainfall, but irrigation of 60% ETc before silking was recommended. These results could be used as guidelines for precision irrigation along with real-time weather information. Keywords: Deficit irrigation, Evapotranspiration, Growth stage, RZWQM, Water use efficiency, Wheat and maize.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


2022 ◽  
Vol 175 ◽  
pp. 114244
Author(s):  
Kai Wei ◽  
Jihong Zhang ◽  
Quanjiu Wang ◽  
Yi Guo ◽  
Weiyi Mu

Sign in / Sign up

Export Citation Format

Share Document