scholarly journals Steel-Concrete Composite Beams with Precast Hollow-Core Slabs: A Sustainable Solution

2021 ◽  
Vol 13 (8) ◽  
pp. 4230
Author(s):  
Felipe Piana Vendramell Ferreira ◽  
Konstantinos Daniel Tsavdaridis ◽  
Carlos Humberto Martins ◽  
Silvana De Nardin

Industrialization of construction makes building operation more environmental friendly and sustainable. This change is necessary as it is an industry that demands large consumption of water and energy, as well as being responsible for the disposal of a high volume of waste. However, the transformation of the construction sector is a big challenge worldwide. It is also well known that the largest proportion of the material used in multistory buildings, and thus its carbon impact, is attributed to their slabs being the main contributor of weight. Steel-Concrete composite beams with precast hollow-core slabs (PCHCSs) were developed due to their technical and economic benefits, owing to their high strength and concrete self-weight reduction, making this system economical and with lower environmental footprint, thus reducing carbon emissions. Significant research has been carried out on deep hollow-core slabs due to the need to overcome larger spans that resist high loads. The publication SCI P401, in accordance with Eurocode 4, is however limited to hollow-core slabs with depths from 150 to 250 mm, with or without a concrete topping. This paper aims to investigate hollow-core slabs with a concrete topping to understand their effect on the flexural behavior of Steel-Concrete composite beams, considering the hollow-core-slab depth is greater than the SCI P401 recommendation. Consequently, 150 mm and 265 mm hollow-core units with a concrete topping were considered to assess the increase of the hollow core unit depth. A comprehensive computational parametric study was conducted by varying the in situ infill concrete strength, the transverse reinforcement rate, the shear connector spacing, and the cross-section of steel. Both full and partial interaction models were examined, and in some cases similar resistances were obtained, meaning that the same strength can be obtained for a smaller number of shear studs, i.e., less energy consumption, thus a reduction in the embodied energy. The calculation procedure, according to Eurocode 4 was in favor of safety for the partial-interaction hypothesis.

2020 ◽  
Vol 9 (1) ◽  
pp. 2219-2225

The technology of manufacturing reinforced concrete structures of long-line systems of formwork-free shaping is widely used lately in construction industry in many countries. Using this technology, industrial construction can be carried out in accordance with the requirements of modern regulatory documents that allow projects to be developed individually, and production can be reoriented in a very short time in accordance with emerging needs. This means that on the same production line it is possible to produce various structural elements of buildings and structures. Also, this technology allows the production of structures according to a wide range of products that meet operational requirements, and increases the possibility of their use in design of buildings and structures with various architectural, planning and structural decisions. Prestressed hollow-core slabs of formwork-free shaping reinforced with high-strength wire reinforcement are widely used due to the simplicity of construction and their relatively low cost, as well as their high bearing capacity, large spans and better quality. The problem of their introduction into construction industry of Uzbekistan is that the issues of designing, manufacturing and using them in construction have not been studied. Besides, the production technology of such slabs is mostly associated with the construction in non-seismic areas, and the country does not have an appropriate regulatory framework for the possibility of slab designing and production. The aim of the study is to assess the strength and serviceability of hollow-core slabs of formwork-free shaping, designed on the basis of the proposed structural solution of the slab cross section and intended for construction in seismic areas. Therefor the issues of optimizing the main reinforcement consumption (prestressed high-strength wire reinforcement) at class B30 concrete strength without using the non-stressed reinforcement (reinforcing products) for the product range under consideration were addressed. Theoretical and constructive solutions of the slabs were developed in accordance with the standard requirements of Uzbekistan KMK 2.03.01-96 “Concrete and reinforced concrete structures”, KMK 2.01.03 “Construction in seismic areas” and considering the Euronorm EN 1168-2005 requirements “Precast concrete. Hollow-core slabs”.


2016 ◽  
Vol 28 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Cheol Ho Lee ◽  
Hyun Joon So ◽  
Chang Hee Park ◽  
Chang Nam Lee ◽  
Seung Hwan Lee ◽  
...  

Structural hollow sections have excellent properties for resisting static loads, with regard to buckling, bi-axial bending and torsion. Structural hollow sections are generally used for truss components, considering greater stiffness and lateral strength. A square hollow section truss has about two third of surface area of same size I section. Hollow section truss may have smaller members as a result of higher structural efficiency. Construction of composite beam commonly includes I section. This paper deals with comparison of commonly used hot rolled or welded I composite section with cold formed hollow RHS and SHS composite section with respect to flexure and shear. Flexural tests were conducted to evaluate the structural behavior of the proposed composite beams. Two different steel sections were used for this study with nominal concrete strength of 30 MPa. The composite beams were tested under concentrated two points loading. The test results were plotted and compared with analytical results. The mid span deflections and slip were recorded for both composite beams. Buckling modes for both composite beams were identified. comparisons have been carried out between predicted beam strength as provided by Eurocode -4 and experimental test results. Sectional properties are checked for cold formed hollow square section using EN 1993-1-3.


2014 ◽  
Vol 507 ◽  
pp. 306-310 ◽  
Author(s):  
Bin Jia ◽  
Jin Xue ◽  
Jun Mo ◽  
Chun Tao Zhang

Abstract. In the view of the project problem that concrete strength grade is lower than C15in reinforced concrete beam, we consider a composite technology strengthened with CFRP, and do some monotonic loading experiments on these beams with eight different methods, and discuss the beam force behavior including ultimate bearing capacity, failure model and crack propagation. This paper finds out that the composite reinforced scheme, which with ticking trough, planting steel displaces concrete and gluing and then pasting CFRP, has a remarkable improvement than pasting CFRP immediately, and that there is a high coherence workability in the old and new concrete, so we can give full play to their role as the CFRP high strength.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 479
Author(s):  
Wei Wang ◽  
Xie-dong Zhang ◽  
Fa-xing Ding ◽  
Xi-long Zhou

High-strength bolted shear connectors (HSBSCs), which can be demounted easily and efficiently during deconstruction, are recommended to replace the conventional steel studs in steel–concrete composite beams (SCCBs) to meet the requirements of sustainable development. The existing investigations on the behavior of HSBSCs mainly focus on the positive moment area of composite beams, in which the concrete slab is in compress condition. In this paper, a three-dimensional finite element model (FEM) was developed to investigate the performance of HSBSCs subjected to inverse push-off loading. Material nonlinearities and the interactions among all components were included in the FEM. The accuracy and reliability of the proposed FEM were initially validated against the available push-off test results. Load-carrying capacity and load–slip response of the HSBSCs under inverse push-off loading were further studied by the verified FEM. A parametric study was carried out to determine the influence of the concrete strength, the diameter and tensile strength of bolt and the clearance between the concrete slab and the bolt as well as the bolt pretension on the shear performance of HSBSCs. Based on the extensive parametric analyses, design recommendations for estimating the shear load at the first slip and load-bearing resistance of HSBSCs were proposed and verified.


2018 ◽  
Vol 149 ◽  
pp. 269-281 ◽  
Author(s):  
Su-Chan Jun ◽  
Cheol-Ho Lee ◽  
Kyu-Hong Han ◽  
Jin-Won Kim

2018 ◽  
Vol 4 (11) ◽  
pp. 2719 ◽  
Author(s):  
Houman Ebrahimpour Komleh ◽  
Ali Akbar Maghsoudi

Over the past few years, a wide use of externally-bonded fiber-reinforced polymer composites (EB-FRP), for rehabilitation, strengthening and repair of existing/deteriorated reinforced/prestressed-concrete (RC/PC) structures has been observed. This paper presents a nonlinear iterative analytical approach conducted to investigate the effects of concrete strength, steel-reinforcement ratio and externally-reinforcement (FRP) stiffness on the flexural behavior and the curvature ductility index of the FRP-strengthened reinforced high-strength concrete (RHSC) beams. Analysis results using the proposed technique have shown very good agreement with the experimental data of FRP-strengthened/non-strengthened RHSC beams, regarding moment–curvature response, ultimate moment and failure mode. Also, a newly prediction equation for the curvature ductility index of FRP strengthened RHSC beams has been developed and verified. Then, converting equation of the curvature ductility index to energy one is proposed. Results indicate that the proposed predictions for the curvature and energy ductility indices are accurate to within 1.87% and 3.03% error for practical applications, respectively. Finally, limit values for these bending ductility indices, based on different design codes’ criterion, are assessed and discussed.


2014 ◽  
Vol 908 ◽  
pp. 30-33
Author(s):  
Ping Tan ◽  
Yan Min Zhao ◽  
Qiu Hong Meng

The durability of high performance concrete is the main index of design. design.With the high durability, the high volume stability,the high compressive strength and the good workability, high performance concrete widely used in high-rise buildings, large-span Bridges, offshore in the construction of buildings, roads, etc.This paper prepared with different water/cement ratio of high performance concrete and tested the concrete workability, mechanical properties, durability.High performance concrete need preparate with low water/cement ratio, choose high quality raw materials,adding a sufficient number of mineral admixtures and high-performance admixture. Useing the high strength and high performance concrete can decrease the size of cross section, lose weight, gain greater economic benefits.


Author(s):  
Yong Liu ◽  
Lanhui Guo ◽  
Zhiguo Li

This paper focuses on a new type of steel-concrete composite beams consisting of U-shaped steel girders and angle connectors. Compared with conventional composite beams consisting of wide flange girders and headed stud connectors (or short channel connectors), the composite beams considered in this study have favorable flexural performance while reducing the excessive costs and potential construction challenges due to installation of the stud and/or channel shear connectors. Through four-point bending tests on five specimens, this research team experimentally investigated flexural behavior of such new composite beams. The five specimens were varied to have different angle connector intervals and installation locations. Test results showed that composite beams with angle connectors welded to the webs of U-shaped steel girder failed in brittle failure modes while composite beams with angle connectors welded on the top flange of U-shaped steel girder failed in ductile failure mode. Moreover, finite element analysis were performed and the results were verified by the experimental results. According to the parametric analysis results, concrete strength has little effect on flexural behavior of composite beams while increasing yield stress of steel girder could significantly increase the flexural resistance but could not change the initial stiffness. Increasing the height of steel girder, the thickness and width of bottom flange are recommended to improve the flexural behavior of composite beams. 


Sign in / Sign up

Export Citation Format

Share Document