scholarly journals Strength Calculation Features and Tests Results on Bearing Capacity and Operational Serviceability of Hollow-Core Floor Slabs of Formwork-Free Shaping in Seismic Areas

2020 ◽  
Vol 9 (1) ◽  
pp. 2219-2225

The technology of manufacturing reinforced concrete structures of long-line systems of formwork-free shaping is widely used lately in construction industry in many countries. Using this technology, industrial construction can be carried out in accordance with the requirements of modern regulatory documents that allow projects to be developed individually, and production can be reoriented in a very short time in accordance with emerging needs. This means that on the same production line it is possible to produce various structural elements of buildings and structures. Also, this technology allows the production of structures according to a wide range of products that meet operational requirements, and increases the possibility of their use in design of buildings and structures with various architectural, planning and structural decisions. Prestressed hollow-core slabs of formwork-free shaping reinforced with high-strength wire reinforcement are widely used due to the simplicity of construction and their relatively low cost, as well as their high bearing capacity, large spans and better quality. The problem of their introduction into construction industry of Uzbekistan is that the issues of designing, manufacturing and using them in construction have not been studied. Besides, the production technology of such slabs is mostly associated with the construction in non-seismic areas, and the country does not have an appropriate regulatory framework for the possibility of slab designing and production. The aim of the study is to assess the strength and serviceability of hollow-core slabs of formwork-free shaping, designed on the basis of the proposed structural solution of the slab cross section and intended for construction in seismic areas. Therefor the issues of optimizing the main reinforcement consumption (prestressed high-strength wire reinforcement) at class B30 concrete strength without using the non-stressed reinforcement (reinforcing products) for the product range under consideration were addressed. Theoretical and constructive solutions of the slabs were developed in accordance with the standard requirements of Uzbekistan KMK 2.03.01-96 “Concrete and reinforced concrete structures”, KMK 2.01.03 “Construction in seismic areas” and considering the Euronorm EN 1168-2005 requirements “Precast concrete. Hollow-core slabs”.

2020 ◽  
Vol 10 (10) ◽  
pp. 3570
Author(s):  
Romualdas Kliukas ◽  
Ona Lukoševičienė ◽  
Arūnas Jaras ◽  
Bronius Jonaitis

This article explores the influence of transverse reinforcement (spiral) and high-strength longitudinal reinforcements on the physical-mechanical properties of centrifuged annular cross-section elements of concrete. The test results of almost 200 reinforced, and over 100 control elements are summarizing in this article. The longitudinal reinforcement ratio of samples produced in the laboratory and factory varied from 1.0% to 6.0%; the transverse reinforcement ratio varied from 0.25% to 1.25%; the pitch of spirals varied from 100 mm to 40 mm and the concrete strength varied from 25 MPa to 60 MPa. Experimental relationships of coefficients for concrete strength, moduli of elasticity and limits of the longitudinal strain of centrifuged concrete in reinforced concrete structures in short-term concentrically compression were proposed.


Author(s):  
Nikolay Trekin ◽  
Emil Kodysh ◽  
Sergey Shmakov ◽  
Tere Terekhov ◽  
Konstantin Kudyakov

Constructive measures taken to ensure the integrity of the entire building or its part in emergency situations with design based on the existing criteria of the limiting state method leads to a significantincrease of the construction cost. One of the ways to reduce additional costs of construction while the protection design against progressive collapse is the possible use of additional reserves of deformability of load-bearing elements. It leads to redistribution of loads and the use of non-destroyed structures. It also leads to possible changes of limiting states in non-standard emergency design situations, taking into account the peculiarities of the operation of structures in a special limiting state at a stage close to destruction. In the GOST 27751-2014 «Reliability for constructions and foundations. General principles» calculated states of the firstand second groups of limiting states are given, and for a special limiting state only the area of its permissible application is indicated. The work of reinforced concrete structures at the stage close to the depletion of the load-bearing capacity is little reflectedin the scientificand technical literature; the work of reinforced concrete structures at the unloading stage due to the redistribution of forces is represented in single publications. The article presents theoretical studies based on experimental data on the deformation of bent reinforced concrete beam elements at a stage close to the maximum load-bearing capacity and at the stage of unloading up to the transformation of a structural element into a mechanism. The influenceof the longitudinal reinforcement, the class of reinforcement, prestressing and the concrete strength on the deformation of reinforced concrete bending elements is considered in the article. The research of the behavior of structural elements continuation at this stage is relevant and contributes to the development of economical and rational design solutions for protection against progressive collapse and in the design of earthquake-resistant buildings.


2021 ◽  
pp. 58-66
Author(s):  
O. D. RUBIN ◽  
◽  
S. E. LISICHKIN ◽  
S. YU. KUZNETSOV ◽  
I. V. BAKLYKOV

The results of experimental data of studies of reinforced concrete structures made of light high-strength concrete in a wide range of reinforcement coefficients (0.015-0.036) are presented. Experimental studies of a series of beam-type reinforced concrete structures made of light high-strength concrete were carried out according to the fi rst and second groups of limiting states to substantiate the use of such structures in hydraulic engineering. It should be noted that the complex technical solutions for a floating bulkhead are under development for the construction of a gravity-type foundation (including an abutment in an earth dam). Recommendations on the use of the obtained results of experimental studies in hydraulic engineering building including when designing a reinforced concrete structure of a dry floating bulkhead for the construction of a gravity-type foundation made of lightweight high-strength concrete are given.


2021 ◽  
Vol 3 (6) ◽  
pp. 35-43
Author(s):  
V. Pshenichkina ◽  
B. Gricenko ◽  
A. Gluhov ◽  
Babovich Miodrag

In the process of inspection of reinforced concrete structures being in long-term service, deflections of beams and slabs beyond the standard values are often detected, which is attributable to concrete creep occurring in the case of the early dismantling of shuttering. At the same time, any visual signs of their reduced load-bearing capacity are absent. Taking into account the high degree of uncertainty of the factors influencing the long-term strains of the concrete, the safe service life of such structures can vary within a rather wide range, and its actual value can be assessed only through probabilistic methods of the reliability theory. The paper presents the results of the investigation of the influence of concrete creep caused by the early dismantling of the shuttering on the reliability of prefabricated reinforced concrete floor beams of a three-storey building. The data obtained through the instrumental verification of the mechanical characteristics of the beam materials and their deformed state were used for design modelling. The authors carried out the probabilistic creep analysis of the beam through the method of statistical modelling taking into account the variability of concrete strength for various values of the relative humidity of the ambient air and the age of concrete at the moment of the load application. The statistical characteristics of the stress-strain modulus and the beam deflection values with various levels of probability were obtained. Due to con-crete creep, the safety analysis showed a 2,4 times reduction in the beam reliability index at the service life of a structure of 70 years.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


2019 ◽  
Vol 289 ◽  
pp. 08005
Author(s):  
Martin Schneider ◽  
Georg Gardener

Corrosion of reinforcing steel has a great influence in reducing the lifetime of concrete structures; Carbonation of the concrete pore solution causes surface corrosion on the steel and diffusion of chloride ions through the capillary system of the concrete cover causes pitting corrosion on the steel surface. Corrosion of metals is highly dependent on the environmental conditions. Exposure to chloride ions can be critical to the service life of reinforced concrete structures. The durability of reinforced concrete structures exposed to deicing salt or marine environments can be affected by impact of chloride ions. Detection methods for the rate of corrosion of non-destructive and destructive procedures were analysed. The potential mapping applied on the concrete surface was discussed as a standard method for corrosion detection and will be explained in detail including the application boundaries of the method. It is assumed that the corrosion behaviour of reinforcing steel depends on crack widths. To analyse that, 8 coated and 8 uncoated test samples with different concrete strength classes were used. The concrete objects were exposed to a 3% sodium chloride solution. The corrosion behaviour of reinforcing steel is analysed by using potential mapping with different reference electrodes (Ag/AgCl and Cu/CuSO4). The results show a significant correlation between crack size and protection system on the surface. The maximum crack width with a low indication of corrosion was found to be 0.1 mm.


2018 ◽  
Vol 230 ◽  
pp. 02003 ◽  
Author(s):  
Taras Bobalo ◽  
Yaroslav Blikharskyy ◽  
Rostyslav Vashkevich ◽  
Myhailo Volynets

Nowadays, reducing the material content of not only buildings and structures in general, but also individual constructions is a topical task that can be realized through the use of high-strength concrete and reinforcement, as well as with the use of external reinforcement. The concentrated location of sheet reinforcement on the external the most tense facets of steel and concrete structures increases the operating height of the cross-section, makes it possible to more effectively use the strength properties of steel in comparison with conventional reinforced concrete, and with the same bearing capacity to economize on expenses. Composite and monolithic reinforced concrete structures with external reinforcement are used in various construction sectors around the world. This contributed to the expansion of the use of reinforced concrete for special buildings of power-engineering and hydrotechnical construction. The technical nd econom efficiency, as well as the possibility of using external rebar as formwork for monolithic concrete construction, have been proved. Therefore, there is a need for the study of structures with combined reinforcement, in which high rigidity of steel and concrete structures is combined with an effective use of high-strength reinforcing bars (rebar) without prior tension


2013 ◽  
Vol 470 ◽  
pp. 921-924
Author(s):  
Hai Chao Tan

As the progress of theory and computer technology, nonlinear analysis is widely applied in civil engineering. Strip method, as one of the numerical methods, is used widely especially in the analysis of beams, columns and shell structures. The first half of this paper introduces the theoretical model and the basic assumptions of the strip method; the latter half of this paper compiles the strip method into computer program using FORTRAN language. At last, using beams with rectangular cross-section of reinforced concrete structures as an example, the paper analyze the factors, such as the strength of the steel bars, which have an impact on the bearing capacity of reinforced concrete structures.


Sign in / Sign up

Export Citation Format

Share Document