scholarly journals Self-Organizing Deep Learning (SO-UNet)—A Novel Framework to Classify Urban and Peri-Urban Forests

2021 ◽  
Vol 13 (10) ◽  
pp. 5548
Author(s):  
Mohamad M. Awad ◽  
Marco Lauteri

Forest-type classification is a very complex and difficult subject. The complexity increases with urban and peri-urban forests because of the variety of features that exist in remote sensing images. The success of forest management that includes forest preservation depends strongly on the accuracy of forest-type classification. Several classification methods are used to map urban and peri-urban forests and to identify healthy and non-healthy ones. Some of these methods have shown success in the classification of forests where others failed. The successful methods used specific remote sensing data technology, such as hyper-spectral and very high spatial resolution (VHR) images. However, both VHR and hyper-spectral sensors are very expensive, and hyper-spectral sensors are not widely available on satellite platforms, unlike multi-spectral sensors. Moreover, aerial images are limited in use, very expensive, and hard to arrange and manage. To solve the aforementioned problems, an advanced method, self-organizing–deep learning (SO-UNet), was created to classify forests in the urban and peri-urban environment using multi-spectral, multi-temporal, and medium spatial resolution Sentinel-2 images. SO-UNet is a combination of two different machine learning technologies: artificial neural network unsupervised self-organizing maps and deep learning UNet. Many experiments have been conducted, and the results showed that SO-UNet overwhelms UNet significantly. The experiments encompassed different settings for the parameters that control the algorithms.

2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2020 ◽  
Author(s):  
Keiller Nogueira ◽  
William Robson Schwartz ◽  
Jefersson Alex Dos Santos

A lot of information may be extracted from the Earth’s surface through aerial images. This information may assist in myriad applications, such as urban planning, crop and forest management, disaster relief, etc. However, the process of distilling this information is strongly based on efficiently encoding the spatial features, a challenging task. Facing this, Deep Learning is able to learn specific data-driven features. This PhD thesis1 introduces deep learning into the remote sensing domain. Specifically, we tackled two main tasks, scene and pixel classification, using Deep Learning to encode spatial features over high-resolution remote sensing images. First, we proposed an architecture and analyze different strategies to exploit Convolutional Networks for image classification. Second, we introduced a network and proposed a new strategy to better exploit multi-context information in order to improve pixelwise classification. Finally, we proposed a new network based on morphological operations towards better learning of some relevant visual features.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1047 ◽  
Author(s):  
Ying Sun ◽  
Jianfeng Huang ◽  
Zurui Ao ◽  
Dazhao Lao ◽  
Qinchuan Xin

The monitoring of tree species diversity is important for forest or wetland ecosystem service maintenance or resource management. Remote sensing is an efficient alternative to traditional field work to map tree species diversity over large areas. Previous studies have used light detection and ranging (LiDAR) and imaging spectroscopy (hyperspectral or multispectral remote sensing) for species richness prediction. The recent development of very high spatial resolution (VHR) RGB images has enabled detailed characterization of canopies and forest structures. In this study, we developed a three-step workflow for mapping tree species diversity, the aim of which was to increase knowledge of tree species diversity assessment using deep learning in a tropical wetland (Haizhu Wetland) in South China based on VHR-RGB images and LiDAR points. Firstly, individual trees were detected based on a canopy height model (CHM, derived from LiDAR points) by the local-maxima-based method in the FUSION software (Version 3.70, Seattle, USA). Then, tree species at the individual tree level were identified via a patch-based image input method, which cropped the RGB images into small patches (the individually detected trees) based on the tree apexes detected. Three different deep learning methods (i.e., AlexNet, VGG16, and ResNet50) were modified to classify the tree species, as they can make good use of the spatial context information. Finally, four diversity indices, namely, the Margalef richness index, the Shannon–Wiener diversity index, the Simpson diversity index, and the Pielou evenness index, were calculated from the fixed subset with a size of 30 × 30 m for assessment. In the classification phase, VGG16 had the best performance, with an overall accuracy of 73.25% for 18 tree species. Based on the classification results, mapping of tree species diversity showed reasonable agreement with field survey data (R2Margalef = 0.4562, root-mean-square error RMSEMargalef = 0.5629; R2Shannon–Wiener = 0.7948, RMSEShannon–Wiener = 0.7202; R2Simpson = 0.7907, RMSESimpson = 0.1038; and R2Pielou = 0.5875, RMSEPielou = 0.3053). While challenges remain for individual tree detection and species classification, the deep-learning-based solution shows potential for mapping tree species diversity.


2011 ◽  
Vol 49 (12) ◽  
pp. 4977-4986 ◽  
Author(s):  
P. Kempeneers ◽  
F. Sedano ◽  
L. Seebach ◽  
P. Strobl ◽  
J. San-Miguel-Ayanz

Author(s):  
Jayme Garcia Arnal Barbedo ◽  
Luciano Vieira Koenigkan ◽  
Thiago Teixeira Santos ◽  
Patrícia Menezes Santos

Unmanned Aerial Vehicles (UAVs) are being increasingly viewed as valuable tools to aid the management of farms. This kind of technology can be particularly useful in the context of extensive cattle farming, as production areas tend to be expansive and animals tend to be more loosely monitored. With the advent of deep learning, and Convolutional Neural Networks (CNNs) in particular, extracting relevant information from aerial images has become more effective. Despite the technological advancements in drone, imaging and machine learning technologies, the application of UAVs for cattle monitoring is far from being thoroughly studied, with many research gaps still remaining. In this context, the objectives of this study were threefold: 1) to determine the highest possible accuracy that could be achieved in the detection of animals of the Canchim breed, which is visually similar to the Nelore breed (\textit{Bos taurus indicus}); 2) to determine the ideal Ground Sample Distance (GSD) for animal detection; 3) to determine the most accurate CNN architecture for this specific problem. The experiments involved 1,853 images containing 8,629 samples of animals, and 15 different CNN architectures were tested. A total of 900 models were trained (15 CNN architectures * 3 spacial resolutions * 2 datasets * 10-fold cross validation), allowing for a deep analysis of the several aspects that impact the detection of cattle using aerial images captured using UAVs. Results revealed that many CNN architectures are robust enough to reliably detect animals in aerial images even under far from ideal conditions, indicating the viability of using UAVs for cattle monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5436 ◽  
Author(s):  
Jayme Garcia Arnal Barbedo ◽  
Luciano Vieira Koenigkan ◽  
Thiago Teixeira Santos ◽  
Patrícia Menezes Santos

Unmanned aerial vehicles (UAVs) are being increasingly viewed as valuable tools to aid the management of farms. This kind of technology can be particularly useful in the context of extensive cattle farming, as production areas tend to be expansive and animals tend to be more loosely monitored. With the advent of deep learning, and convolutional neural networks (CNNs) in particular, extracting relevant information from aerial images has become more effective. Despite the technological advancements in drone, imaging and machine learning technologies, the application of UAVs for cattle monitoring is far from being thoroughly studied, with many research gaps still remaining. In this context, the objectives of this study were threefold: (1) to determine the highest possible accuracy that could be achieved in the detection of animals of the Canchim breed, which is visually similar to the Nelore breed (Bos taurus indicus); (2) to determine the ideal ground sample distance (GSD) for animal detection; (3) to determine the most accurate CNN architecture for this specific problem. The experiments involved 1853 images containing 8629 samples of animals, and 15 different CNN architectures were tested. A total of 900 models were trained (15 CNN architectures × 3 spacial resolutions × 2 datasets × 10-fold cross validation), allowing for a deep analysis of the several aspects that impact the detection of cattle using aerial images captured using UAVs. Results revealed that many CNN architectures are robust enough to reliably detect animals in aerial images even under far from ideal conditions, indicating the viability of using UAVs for cattle monitoring.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 397 ◽  
Author(s):  
Shiran Song ◽  
Jianhua Liu ◽  
Yuan Liu ◽  
Guoqiang Feng ◽  
Hui Han ◽  
...  

High spatial resolution remote sensing image (HSRRSI) data provide rich texture, geometric structure, and spatial distribution information for surface water bodies. The rich detail information provides better representation of the internal components of each object category and better reflects the relationships between adjacent objects. In this context, recognition methods such as geographic object-based image analysis (GEOBIA) have improved significantly. However, these methods focus mainly on bottom-up classifications from visual features to semantic categories, but ignore top-down feedback which can optimize recognition results. In recent years, deep learning has been applied in the field of remote sensing measurements because of its powerful feature extraction ability. A special convolutional neural network (CNN) based region proposal generation and object detection integrated framework has greatly improved the performance of object detection for HSRRSI, which provides a new method for water body recognition based on remote sensing data. This study uses the excellent “self-learning ability” of deep learning to construct a modified structure of the Mask R-CNN method which integrates bottom-up and top-down processes for water recognition. Compared with traditional methods, our method is completely data-driven without prior knowledge, and it can be regarded as a novel technical procedure for water body recognition in practical engineering application. Experimental results indicate that the method produces accurate recognition results for multi-source and multi-temporal water bodies, and can effectively avoid confusion with shadows and other ground features.


Sign in / Sign up

Export Citation Format

Share Document