scholarly journals Neural Relation Classification Using Selective Attention and Symmetrical Directional Instances

Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 357 ◽  
Author(s):  
Zhen Tan ◽  
Bo Li ◽  
Peixin Huang ◽  
Bin Ge ◽  
Weidong Xiao

Relation classification (RC) is an important task in information extraction from unstructured text. Recently, several neural methods based on various network architectures have been adopted for the task of RC. Among them, convolution neural network (CNN)-based models stand out due to their simple structure, low model complexity and “good” performance. Nevertheless, there are still at least two limitations associated with existing CNN-based RC models. First, when handling samples with long distances between entities, they fail to extract effective features, even obtaining disturbing ones from the clauses, which results in decreased accuracy. Second, existing RC models tend to produce inconsistent results when fed with forward and backward instances of an identical sample. Therefore, we present a novel CNN-based sentence encoder with selective attention by leveraging the shortest dependency paths, and devise a classification framework using symmetrical directional—forward and backward—instances via information fusion. Comprehensive experiments verify the superior performance of the proposed RC model over mainstream competitors without additional artificial features.

2018 ◽  
Vol 8 (10) ◽  
pp. 1924 ◽  
Author(s):  
Guangle Yao ◽  
Tao Lei ◽  
Xianyuan Liu ◽  
Ping Jiang

Temporal action detection in long, untrimmed videos is an important yet challenging task that requires not only recognizing the categories of actions in videos, but also localizing the start and end times of each action. Recent years, artificial neural networks, such as Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) improve the performance significantly in various computer vision tasks, including action detection. In this paper, we make the most of different granular classifiers and propose to detect action from fine to coarse granularity, which is also in line with the people’s detection habits. Our action detection method is built in the ‘proposal then classification’ framework. We employ several neural network architectures as deep information extractor and segment-level (fine granular) and window-level (coarse granular) classifiers. Each of the proposal and classification steps is executed from the segment to window level. The experimental results show that our method not only achieves detection performance that is comparable to that of state-of-the-art methods, but also has a relatively balanced performance for different action categories.


Author(s):  
B. Prima ◽  
M. Bouhorma

Abstract. In this paper, we propose a malware classification framework using transfer learning based on existing Deep Learning models that have been pre-trained on massive image datasets. In recent years there has been a significant increase in the number and variety of malwares, which amplifies the need to improve automatic detection and classification of the malwares. Nowadays, neural network methodology has reached a level that may exceed the limits of previous machine learning methods, such as Hidden Markov Models and Support Vector Machines (SVM). As a result, convolutional neural networks (CNNs) have shown superior performance compared to traditional learning techniques, specifically in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture for malware classification. The malicious binary files are represented as grayscale images and a deep neural network is trained by freezing the pre-trained VGG16 layers on the ImageNet dataset and adapting the last fully connected layer to the malware family classification. Our evaluation results show that our approach is able to achieve an average of 98% accuracy for the MALIMG dataset.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Samuel Manoharan J

In regions of visual inference, optimized performance is demonstrated by capsule networks on structured data. Classification of hierarchical multi-label text is performed with a simple capsule network algorithm in this paper. It is further compared to support vector machine (SVM), Long Short Term Memory (LSTM), artificial neural network (ANN), convolutional Neural Network (CNN) and other neural and non-neural network architectures to demonstrate its superior performance. The Blurb Genre Collection (BGC) and Web of Science (WOS) datasets are used for experimental purpose. The encoded latent data is combined with the algorithm while handling structurally diverse categories and rare events in hierarchical multi-label text applications.


2019 ◽  
Vol 2019 (1) ◽  
pp. 153-158
Author(s):  
Lindsay MacDonald

We investigated how well a multilayer neural network could implement the mapping between two trichromatic color spaces, specifically from camera R,G,B to tristimulus X,Y,Z. For training the network, a set of 800,000 synthetic reflectance spectra was generated. For testing the network, a set of 8,714 real reflectance spectra was collated from instrumental measurements on textiles, paints and natural materials. Various network architectures were tested, with both linear and sigmoidal activations. Results show that over 85% of all test samples had color errors of less than 1.0 ΔE2000 units, much more accurate than could be achieved by regression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Narjes Rohani ◽  
Changiz Eslahchi

Abstract Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health. Proposing appropriate computational methods for predicting unknown DDI with high precision is challenging. We proposed "NDD: Neural network-based method for drug-drug interaction prediction" for predicting unknown DDIs using various information about drugs. Multiple drug similarities based on drug substructure, target, side effect, off-label side effect, pathway, transporter, and indication data are calculated. At first, NDD uses a heuristic similarity selection process and then integrates the selected similarities with a nonlinear similarity fusion method to achieve high-level features. Afterward, it uses a neural network for interaction prediction. The similarity selection and similarity integration parts of NDD have been proposed in previous studies of other problems. Our novelty is to combine these parts with new neural network architecture and apply these approaches in the context of DDI prediction. We compared NDD with six machine learning classifiers and six state-of-the-art graph-based methods on three benchmark datasets. NDD achieved superior performance in cross-validation with AUPR ranging from 0.830 to 0.947, AUC from 0.954 to 0.994 and F-measure from 0.772 to 0.902. Moreover, cumulative evidence in case studies on numerous drug pairs, further confirm the ability of NDD to predict unknown DDIs. The evaluations corroborate that NDD is an efficient method for predicting unknown DDIs. The data and implementation of NDD are available at https://github.com/nrohani/NDD.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1065
Author(s):  
Moshe Bensimon ◽  
Shlomo Greenberg ◽  
Moshe Haiut

This work presents a new approach based on a spiking neural network for sound preprocessing and classification. The proposed approach is biologically inspired by the biological neuron’s characteristic using spiking neurons, and Spike-Timing-Dependent Plasticity (STDP)-based learning rule. We propose a biologically plausible sound classification framework that uses a Spiking Neural Network (SNN) for detecting the embedded frequencies contained within an acoustic signal. This work also demonstrates an efficient hardware implementation of the SNN network based on the low-power Spike Continuous Time Neuron (SCTN). The proposed sound classification framework suggests direct Pulse Density Modulation (PDM) interfacing of the acoustic sensor with the SCTN-based network avoiding the usage of costly digital-to-analog conversions. This paper presents a new connectivity approach applied to Spiking Neuron (SN)-based neural networks. We suggest considering the SCTN neuron as a basic building block in the design of programmable analog electronics circuits. Usually, a neuron is used as a repeated modular element in any neural network structure, and the connectivity between the neurons located at different layers is well defined. Thus, generating a modular Neural Network structure composed of several layers with full or partial connectivity. The proposed approach suggests controlling the behavior of the spiking neurons, and applying smart connectivity to enable the design of simple analog circuits based on SNN. Unlike existing NN-based solutions for which the preprocessing phase is carried out using analog circuits and analog-to-digital conversion, we suggest integrating the preprocessing phase into the network. This approach allows referring to the basic SCTN as an analog module enabling the design of simple analog circuits based on SNN with unique inter-connections between the neurons. The efficiency of the proposed approach is demonstrated by implementing SCTN-based resonators for sound feature extraction and classification. The proposed SCTN-based sound classification approach demonstrates a classification accuracy of 98.73% using the Real-World Computing Partnership (RWCP) database.


Sign in / Sign up

Export Citation Format

Share Document