scholarly journals Path Loss Model for Outdoor Parking Environments at 28 GHz and 38 GHz for 5G Wireless Networks

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 672 ◽  
Author(s):  
Ahmed Al-Samman ◽  
Tharek Rahman ◽  
MHD Hindia ◽  
Abdusalama Daho ◽  
Effariza Hanafi

It has been widely speculated that the performance of the next generation Internet of Things (IoT) based wireless network should meet a transmission speed on the order of 1000 times more than current wireless networks; energy consumption on the order of 10 times less and access delay of less than 1 ns that will be provided by future 5G systems. To increase the current mobile broadband capacity in future 5G systems, the millimeter wave (mmWave) band will be used with huge amounts of bandwidth available in this band. Hence, to support this wider bandwith at the mmWave band, new radio access technology (RAT) should be provided for 5G systems. The new RAT with symmetry design for downlink and uplink should support different scenarios such as device to device (D2D) and multi-hop communications. This paper presents the path loss models in parking lot environment which represents the multi-end users for future 5G applications. To completely assess the typical performance of 5G wireless network systems across these different frequency bands, it is necessary to develop path loss (PL) models across these wide frequency ranges. The short wavelength of the highest frequency bands provides many scatterings from different objects. Cars and other objects are some examples of scatterings, which represent a critical issue at millimeter-wave bands. This paper presents the large-scale propagation characteristics for millimeter-wave in a parking lot environment. A new physical-based path loss model for parking lots is proposed. The path loss was investigated based on different models. The measurement was conducted at 28 GHz and 38 GHz frequencies for different scenarios. Results showed that the path loss exponent values were approximately identical at 28 GHz and 38 GHz for different scenarios of parking lots. It was found that the proposed compensation factor varied between 10.6 dB and 23.1 dB and between 13.1 and 19.1 in 28 GHz and 38 GHz, respectively. The proposed path loss models showed that more compensation factors are required for more scattering objects, especially at 28 GHz.

2016 ◽  
Vol 15 (10) ◽  
pp. 6939-6947 ◽  
Author(s):  
Ahmed Iyanda Sulyman ◽  
Abdulmalik Alwarafy ◽  
George R. MacCartney ◽  
Theodore S. Rappaport ◽  
Abdulhameed Alsanie

2018 ◽  
Vol 26 (6) ◽  
pp. 3025-3033 ◽  
Author(s):  
Ahmed Mohammed AL-SAMMAN ◽  
Tharek Abd RAHMAN ◽  
Md. Nour HINDIA ◽  
Jamal NASIR

2021 ◽  
Vol 22 (6) ◽  
pp. 767-776
Author(s):  
Qiuming Zhu ◽  
Mengtian Yao ◽  
Fei Bai ◽  
Xiaomin Chen ◽  
Weizhi Zhong ◽  
...  

Author(s):  
Nor R. Zulkefly ◽  
Tharek A. Rahman ◽  
Ahmed M. Al-Samman ◽  
Abdallah M. S. Mataria ◽  
Chee Y. Leow

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 495 ◽  
Author(s):  
Faizan Qamar ◽  
MHD Nour Hindia ◽  
Kaharudin Dimyati ◽  
Kamarul Ariffin Noordin ◽  
Mohammed Bahjat Majed ◽  
...  

The advent of fifth-generation (5G) systems and their mechanics have introduced an unconventional frequency spectrum of high bandwidth with most falling under the millimeter wave (mmWave) spectrum. The benefit of adopting these bands of the frequency spectrum is two-fold. First, most of these bands appear to be unutilized and they are free, thus suggesting the absence of interference from other technologies. Second, the availability of a larger bandwidth offers higher data rates for all users, as there are higher numbers of users who are connected in a small geographical area, which is also stated as the Internet of Things (IoT). Nevertheless, high-frequency band poses several challenges in terms of coverage area limitations, signal attenuation, path and penetration losses, as well as scattering. Additionally, mmWave signal bands are susceptible to blockage from buildings and other structures, particularly in higher-density urban areas. Identifying the channel performance at a given frequency is indeed necessary to optimize communication efficiency between the transmitter and receiver. Therefore, this paper investigated the potential ability of mmWave path loss models, such as floating intercept (FI) and close-in (CI), based on real measurements gathered from urban microcell outdoor environments at 38 GHz conducted at the Universiti Teknologi Malaysia (UTM), Kuala Lumpur campus. The measurement data were obtained by using a narrow band mmWave channel sounder equipped with a steerable direction horn antenna. It investigated the potential of the network for outdoor scenarios of line-of-sight (LOS) and non-line-of-sight (NLOS) with both schemes of co- (vertical-vertical) and cross (vertical-horizontal) polarization. The parameters were selected to reflect the performance and the variances with other schemes, such as average users cell throughput, throughput of users that are at cell-edges, fairness index, and spectral efficiency. The outcomes were examined for various antenna configurations as well as at different channel bandwidths to prove the enhancement of overall network performance. This work showed that the CI path loss model predicted greater network performance for the LOS condition, and also estimated significant outcomes for the NLOS environment. The outputs proved that the FI path loss model, particularly for V-V antenna polarization, gave system simulation results that were unsuitable for the NLOS scenario.


2020 ◽  
Vol 21 (1) ◽  
pp. 85-99
Author(s):  
Muhammad Akramuddin Mohd Nordin ◽  
Huda Adibah Mohd Ramli

5G networks are expected to use the Millimeter Wave (mmWave) frequency band and this frequency provides wider bandwidth allowing a better quality of service to be offered to the users. However, the mmWave frequencies may lead to a higher path loss due to several factors including blockages,rain and atmosphere. Therefore, to allow optimal positioning of the 5G base stations, the study of path loss model in this 5G mmWave frequencies is crucial. This paper investigates the 5G path loss models as well as their parameters that are most suitable for cross-polarized antennas under rural macrocell environment in Malaysia. Path loss models namely Close In Free Space Reference Distance Path Loss Model (CI) model, and Alpha Beta Gamma (ABG) or Floating Intercept (FI) Model along with their parameters achieved from the previous studies were evaluated by comparing the parameters and models that are closest to the sampled path loss when using antennas that have different patterns and polarizations in an open-source simulator. Results obtained indicate that FI model can be adapted to the majority of the environment where this model showed the lowest Root Mean Square Error (RMSE). The study of path loss models by using advanced simulator or field measurement, and studies on other rural areas from other states in Malaysia will be considered in future works.


Sign in / Sign up

Export Citation Format

Share Document