scholarly journals Directional Radio Propagation Path Loss Models for Millimeter-Wave Wireless Networks in the 28-, 60-, and 73-GHz Bands

2016 ◽  
Vol 15 (10) ◽  
pp. 6939-6947 ◽  
Author(s):  
Ahmed Iyanda Sulyman ◽  
Abdulmalik Alwarafy ◽  
George R. MacCartney ◽  
Theodore S. Rappaport ◽  
Abdulhameed Alsanie
2014 ◽  
Vol 52 (9) ◽  
pp. 78-86 ◽  
Author(s):  
Ahmed Iyanda Sulyman ◽  
Almuthanna T. Nassar ◽  
Mathew K. Samimi ◽  
George R. Maccartney ◽  
Theodore S. Rappaport ◽  
...  

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 672 ◽  
Author(s):  
Ahmed Al-Samman ◽  
Tharek Rahman ◽  
MHD Hindia ◽  
Abdusalama Daho ◽  
Effariza Hanafi

It has been widely speculated that the performance of the next generation Internet of Things (IoT) based wireless network should meet a transmission speed on the order of 1000 times more than current wireless networks; energy consumption on the order of 10 times less and access delay of less than 1 ns that will be provided by future 5G systems. To increase the current mobile broadband capacity in future 5G systems, the millimeter wave (mmWave) band will be used with huge amounts of bandwidth available in this band. Hence, to support this wider bandwith at the mmWave band, new radio access technology (RAT) should be provided for 5G systems. The new RAT with symmetry design for downlink and uplink should support different scenarios such as device to device (D2D) and multi-hop communications. This paper presents the path loss models in parking lot environment which represents the multi-end users for future 5G applications. To completely assess the typical performance of 5G wireless network systems across these different frequency bands, it is necessary to develop path loss (PL) models across these wide frequency ranges. The short wavelength of the highest frequency bands provides many scatterings from different objects. Cars and other objects are some examples of scatterings, which represent a critical issue at millimeter-wave bands. This paper presents the large-scale propagation characteristics for millimeter-wave in a parking lot environment. A new physical-based path loss model for parking lots is proposed. The path loss was investigated based on different models. The measurement was conducted at 28 GHz and 38 GHz frequencies for different scenarios. Results showed that the path loss exponent values were approximately identical at 28 GHz and 38 GHz for different scenarios of parking lots. It was found that the proposed compensation factor varied between 10.6 dB and 23.1 dB and between 13.1 and 19.1 in 28 GHz and 38 GHz, respectively. The proposed path loss models showed that more compensation factors are required for more scattering objects, especially at 28 GHz.


Author(s):  
Mohammed B. Majed ◽  
Tharek A. Rahman ◽  
Omar Abdul Aziz

The global bandwidth inadequacy facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks, and mmWave band is one of the promising candidates due to wide spectrum. This paper presents propagation path loss and outdoor coverage and link budget measurements for frequencies above 6 GHz (mm-wave bands) using directional horn antennas at the transmitter and omnidirectional antennas at the receiver. This work presents measurements showing the propagation time delay spread and path loss as a function of separation distance for different frequencies and antenna pointing angles for many types of real-world environments. The data presented here show that at 28 GHz, 38 GHz and 60 GHz, unobstructed Line of Site (LOS) channels obey free space propagation path loss while non-LOS (NLOS) channels have large multipath delay spreads and can utilize many different pointing angles to provide propagation links. At 60 GHz, there is more path loss and smaller delay spreads. Power delay profiles PDPs were measured at every individual pointing angle for each TX and RX location, and integrating each of the PDPs to obtain received power as a function of pointing angle. The result shows that the mean RMS delay spread varies between 7.2 ns and 74.4 ns for 60 GHz and 28 GHz respectively in NLOS scenario.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ting Jiang ◽  
Maozhong Song ◽  
Xiaorong Zhu ◽  
Xu Liu

Channel state information (CSI) is important to improve the performance of wireless transmission. However, the problems of high propagation path loss, multipath, and frequency selective fading make it difficult to obtain the CSI in broadband millimeter-wave (mmWave) system. Based on the inherent multidimensional structure of mmWave multipath channels and the correlation between channel dimensions, mmWave multiple input multiple output (MIMO) channels are modelled as high-order parallel profiles with linear dependence (PARALIND) model in this paper, and a new PARALIND-based channel estimation algorithm is proposed for broadband mmWave system. Due to the structural property of PARALIND model, the proposed algorithm firstly separates the multipath channels of different scatterers by PARALIND decomposition and then estimates the channel parameters from the factor matrices decomposed from the model based on their structures. Meanwhile, the performance of mmWave channel estimation is analysed theoretically. A necessary condition for channel parameter estimation is given based on the uniqueness principle of PARALIND model. Simulation results show that the proposed algorithm performs better than traditional compressive sensing-based channel estimation algorithms.


Author(s):  
Kaveh Pahlavan ◽  
Yunxing Ye ◽  
Ruijun Fu ◽  
Umair Khan

In this invited paper, the authors introduce an overview of the fundamentals of radio frequency (RF) channel measurement and modeling techniques needed for localization inside the human body. To address these fundamentals, the authors use capsule endoscopy as an example application. The authors first provide the results of the Cramer Rao Lower Bound (CRLB) for received signal strength (RSS) based endoscopy capsule localization, inside the human body, using existing path-loss models for radio propagation. Then challenges demanding further research are highlighted for attaining more precise localization using the time-of-arrival (TOA) based ranging techniques.


Sign in / Sign up

Export Citation Format

Share Document