scholarly journals PERFORMANCE ANALYSIS OF 5G PATH LOSS MODELS FOR RURAL MACROCELL ENVIRONMENT

2020 ◽  
Vol 21 (1) ◽  
pp. 85-99
Author(s):  
Muhammad Akramuddin Mohd Nordin ◽  
Huda Adibah Mohd Ramli

5G networks are expected to use the Millimeter Wave (mmWave) frequency band and this frequency provides wider bandwidth allowing a better quality of service to be offered to the users. However, the mmWave frequencies may lead to a higher path loss due to several factors including blockages,rain and atmosphere. Therefore, to allow optimal positioning of the 5G base stations, the study of path loss model in this 5G mmWave frequencies is crucial. This paper investigates the 5G path loss models as well as their parameters that are most suitable for cross-polarized antennas under rural macrocell environment in Malaysia. Path loss models namely Close In Free Space Reference Distance Path Loss Model (CI) model, and Alpha Beta Gamma (ABG) or Floating Intercept (FI) Model along with their parameters achieved from the previous studies were evaluated by comparing the parameters and models that are closest to the sampled path loss when using antennas that have different patterns and polarizations in an open-source simulator. Results obtained indicate that FI model can be adapted to the majority of the environment where this model showed the lowest Root Mean Square Error (RMSE). The study of path loss models by using advanced simulator or field measurement, and studies on other rural areas from other states in Malaysia will be considered in future works.

Author(s):  
V. O. A. Akpaida ◽  
F. I. Anyasi ◽  
S. I. Uzairue ◽  
A. I. Idim

This article involves the site specific determination of an outdoor path loss model and Signal penetration level in some selected modern residential and office apartments in Ogbomosho, Oyo State. Measurements of signal strength and its associated location parameters referenced globally were carried out. Propagation path loss characteristics of Ogbomosho were investigated using three different locations with distinctively different yet modern building materials. Consequently, received signal strength (RSS) was measured at a distance d in meters, from appropriate base stations for various environments investigated. The data were analyzed to determine the propagation path loss exponent, signal penetration level and path loss characteristics. From calculations, the average building penetration losses were, 5.93dBm, 6.40dBm and 6.1dBm outside the hollow blocks B1, solid blocks B2 and hollow blocks mixed with pre cast asbestos B3, buildings respectively with a corresponding path loss exponent values of, 3.77, 3.80 and 3.63. Models were developed and validated, and used to predict the received power inside specific buildings. Moreover, the propagation models developed for the different building types can be used to predict the respective signal level within the building types, once the transmitter – receiver distance is known. The readings obtained from the developed models were compared with both the measured values and values computed using some existing models with satisfactory results obtained.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 672 ◽  
Author(s):  
Ahmed Al-Samman ◽  
Tharek Rahman ◽  
MHD Hindia ◽  
Abdusalama Daho ◽  
Effariza Hanafi

It has been widely speculated that the performance of the next generation Internet of Things (IoT) based wireless network should meet a transmission speed on the order of 1000 times more than current wireless networks; energy consumption on the order of 10 times less and access delay of less than 1 ns that will be provided by future 5G systems. To increase the current mobile broadband capacity in future 5G systems, the millimeter wave (mmWave) band will be used with huge amounts of bandwidth available in this band. Hence, to support this wider bandwith at the mmWave band, new radio access technology (RAT) should be provided for 5G systems. The new RAT with symmetry design for downlink and uplink should support different scenarios such as device to device (D2D) and multi-hop communications. This paper presents the path loss models in parking lot environment which represents the multi-end users for future 5G applications. To completely assess the typical performance of 5G wireless network systems across these different frequency bands, it is necessary to develop path loss (PL) models across these wide frequency ranges. The short wavelength of the highest frequency bands provides many scatterings from different objects. Cars and other objects are some examples of scatterings, which represent a critical issue at millimeter-wave bands. This paper presents the large-scale propagation characteristics for millimeter-wave in a parking lot environment. A new physical-based path loss model for parking lots is proposed. The path loss was investigated based on different models. The measurement was conducted at 28 GHz and 38 GHz frequencies for different scenarios. Results showed that the path loss exponent values were approximately identical at 28 GHz and 38 GHz for different scenarios of parking lots. It was found that the proposed compensation factor varied between 10.6 dB and 23.1 dB and between 13.1 and 19.1 in 28 GHz and 38 GHz, respectively. The proposed path loss models showed that more compensation factors are required for more scattering objects, especially at 28 GHz.


Author(s):  
Fayad Ghawbar ◽  
Faiz A. Saparudin ◽  
Jumadi A. S. ◽  
Aimi S. A. Ghafar ◽  
N. Katiran

The explosive growth of mobile devices is the main engine to continue evolution in the communications field. The amount of traffic generated by today’s users in applications such as high definition videos, cloud computing, and wearable devices, require a drastic change in mobile telecommunications. 5G Ultra Dense Network (UDN) is one of the key components leading in achieving the high capacity for all users. In UDN, the number of base stations or access nodes equals or exceeds the number of active users by unit area. In this paper, different modeling techniques of UDN are studied. Moreover, a heterogeneous framework modeling was proposed. This framework illustrated a system model for UDN based on Urban Macro (UMa) Scenario. The distance dependent path loss model for UMa was presented and analyzed. The Simulation results of path loss model indicated an increase in the path loss with increasing the distance range from 10m to 500m. The received power simulation results of User Terminal (UT) displayed the power is approaching zero when the distance between the BS and UT goes beyond 250m. Therefore, it is assumed that UTs located 250m away from the BS can reuse the subchannel of AN in another sector with negligible interference.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5100
Author(s):  
Chi Nguyen ◽  
Adnan Ahmad Cheema

Large-scale fading models play an important role in estimating radio coverage, optimizing base station deployments and characterizing the radio environment to quantify the performance of wireless networks. In recent times, multi-frequency path loss models are attracting much interest due to their expected support for both sub-6 GHz and higher frequency bands in future wireless networks. Traditionally, linear multi-frequency path loss models like the ABG model have been considered, however such models lack accuracy. The path loss model based on a deep learning approach is an alternative method to traditional linear path loss models to overcome the time-consuming path loss parameters predictions based on the large dataset at new frequencies and new scenarios. In this paper, we proposed a feed-forward deep neural network (DNN) model to predict path loss of 13 different frequencies from 0.8 GHz to 70 GHz simultaneously in an urban and suburban environment in a non-line-of-sight (NLOS) scenario. We investigated a broad range of possible values for hyperparameters to search for the best set of ones to obtain the optimal architecture of the proposed DNN model. The results show that the proposed DNN-based path loss model improved mean square error (MSE) by about 6 dB and achieved higher prediction accuracy R2 compared to the multi-frequency ABG path loss model. The paper applies the XGBoost algorithm to evaluate the importance of the features for the proposed model and the related impact on the path loss prediction. In addition, the effect of hyperparameters, including activation function, number of hidden neurons in each layer, optimization algorithm, regularization factor, batch size, learning rate, and momentum, on the performance of the proposed model in terms of prediction error and prediction accuracy are also investigated.


2019 ◽  
Vol E102.B (8) ◽  
pp. 1676-1688 ◽  
Author(s):  
Mitsuki NAKAMURA ◽  
Motoharu SASAKI ◽  
Wataru YAMADA ◽  
Naoki KITA ◽  
Takeshi ONIZAWA ◽  
...  

Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Author(s):  
Arumjeni Mitayani ◽  
Galih Nugraha Nurkahfi ◽  
Mochamad Mardi Marta Dinata ◽  
Vita Awalia Mardiana ◽  
Nasrullah Armi ◽  
...  

2021 ◽  
pp. 100393
Author(s):  
N.H. Ranchagoda ◽  
K. Sithamparanathan ◽  
M. Ding ◽  
A. Al-Hourani ◽  
K.M. Gomez

Sign in / Sign up

Export Citation Format

Share Document