scholarly journals Approximate Solutions and Symmetry of a Two-Component Nonlocal Reaction-Diffusion Population Model of the Fisher–KPP Type

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 366 ◽  
Author(s):  
Alexander Shapovalov ◽  
Andrey Trifonov

We propose an approximate analytical approach to a ( 1 + 1 ) dimensional two-component system consisting of a nonlocal generalization of the well-known Fisher–Kolmogorov–Petrovskii– Piskunov (KPP) population equation and a diffusion equation for the density of the active substance solution surrounding the population. Both equations of the system have terms that describe the interaction effects between the population and the active substance. The first order perturbation theory is applied to the system assuming that the interaction parameter is small. The Wentzel–Kramers–Brillouin (WKB)–Maslov semiclassical approximation is applied to the generalized nonlocal Fisher–KPP equation with the diffusion parameter assumed to be small, which corresponds to population dynamics under certain conditions. In the framework of the approach proposed, we consider symmetry operators which can be used to construct families of special approximate solutions to the system of model equations, and the procedure for constructing the solutions is illustrated by an example. The approximate solutions are discussed in the context of the released activity effect variously debated in the literature.

2020 ◽  
Vol 19 ◽  
pp. 103462 ◽  
Author(s):  
Hijaz Ahmad ◽  
Tufail A. Khan ◽  
Imtiaz Ahmad ◽  
Predrag S. Stanimirović ◽  
Yu-Ming Chu

2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


2021 ◽  
Vol 15 ◽  
pp. 174830262199958
Author(s):  
Colin L Defreitas ◽  
Steve J Kane

This paper proposes a numerical approach to the solution of the Fisher-KPP reaction-diffusion equation in which the space variable is developed using a purely finite difference scheme and the time development is obtained using a hybrid Laplace Transform Finite Difference Method (LTFDM). The travelling wave solutions usually associated with the Fisher-KPP equation are, in general, not deemed suitable for treatment using Fourier or Laplace transform numerical methods. However, we were able to obtain accurate results when some degree of time discretisation is inbuilt into the process. While this means that the advantage of using the Laplace transform to obtain solutions for any time t is not fully exploited, the method does allow for considerably larger time steps than is otherwise possible for finite-difference methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mounirah Areshi ◽  
A. M. Zidan ◽  
Rasool Shah ◽  
Kamsing Nonlaopon

In this article, the iterative transformation method and homotopy perturbation transformation method are applied to calculate the solution of time-fractional Cauchy-reaction diffusion equations. In this technique, Shehu transformation is combined of the iteration and the homotopy perturbation techniques. Four examples are examined to show validation and the efficacy of the present methods. The approximate solutions achieved by the suggested methods indicate that the approach is easy to apply to the given problems. Moreover, the solution in series form has the desire rate of convergence and provides closed-form solutions. It is noted that the procedure can be modified in other directions of fractional order problems. These solutions show that the current technique is very straightforward and helpful to perform in applied sciences.


2021 ◽  
Vol 20 (11) ◽  
pp. 3921
Author(s):  
Wei Yang ◽  
Jinliang Wang

<p style='text-indent:20px;'>In this paper, we are concerned with the threshold dynamics of a diffusive cholera model incorporating latency and bacterial hyperinfectivity. Our model takes the form of spatially nonlocal reaction-diffusion system associated with zero-flux boundary condition and time delay. By studying the associated eigenvalue problem, we establish the threshold dynamics that determines whether or not cholera will spread. We also confirm that the threshold dynamics can be determined by the basic reproduction number. By constructing Lyapunov functional, we address the global attractivity of the unique positive equilibrium whenever it exists. The theoretical results are still hold for the case when the constant parameters are replaced by strictly positive and spatial dependent functions.</p>


Sign in / Sign up

Export Citation Format

Share Document