scholarly journals MILDMS: Multiple Instance Learning via DD Constraint and Multiple Part Similarity

Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1080
Author(s):  
Chao Wen ◽  
Zhan Li ◽  
Jian Qu ◽  
Qingchen Fan ◽  
Aiping Li

As a subject area of symmetry, multiple instance learning (MIL) is a special form of a weakly supervised learning problem where the label is related to the bag, not the instances contained in it. The difficulty of MIL lies in the incomplete label information of instances. To resolve this problem, in this paper, we propose a novel diverse density (DD) and multiple part similarity combination method for multiple instance learning, named MILDMS. First, we model the target concepts optimization with a DD function constraint on positive and negative instance space, which can greatly improve the robustness to label noise problem. Next, we combine the positive and negative instances in the bag (generated by hand-crafted and convolutional neural network features) with multiple part similarities to construct an MIL kernel. We evaluate the proposed approach on the MUSK dataset, whose results MUSK1 (91.9%) and MUSK2 (92.2%) show our method is comparable to other MIL algorithms. To further demonstrate generality, we also present experimental results on the PASCAL VOC 2007 and 2012 (46.5% and 42.2%) and COREL (78.6%) that significantly outperforms the state-of-the-art algorithms including deep MIL and other non-deep MIL algorithms.

2019 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Yi Lin ◽  
Honggang Zhang

In the era of Big Data, multi-instance learning, as a weakly supervised learning framework, has various applications since it is helpful to reduce the cost of the data-labeling process. Due to this weakly supervised setting, learning effective instance representation/embedding is challenging. To address this issue, we propose an instance-embedding regularizer that can boost the performance of both instance- and bag-embedding learning in a unified fashion. Specifically, the crux of the instance-embedding regularizer is to maximize correlation between instance-embedding and underlying instance-label similarities. The embedding-learning framework was implemented using a neural network and optimized in an end-to-end manner using stochastic gradient descent. In experiments, various applications were studied, and the results show that the proposed instance-embedding-regularization method is highly effective, having state-of-the-art performance.


2017 ◽  
Vol 26 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Jie Wang ◽  
Liangjian Cai ◽  
Xin Zhao

AbstractAs we are usually confronted with a large instance space for real-word data sets, it is significant to develop a useful and efficient multiple-instance learning (MIL) algorithm. MIL, where training data are prepared in the form of labeled bags rather than labeled instances, is a variant of supervised learning. This paper presents a novel MIL algorithm for an extreme learning machine called MI-ELM. A radial basis kernel extreme learning machine is adapted to approach the MIL problem using Hausdorff distance to measure the distance between the bags. The clusters in the hidden layer are composed of bags that are randomly generated. Because we do not need to tune the parameters for the hidden layer, MI-ELM can learn very fast. The experimental results on classifications and multiple-instance regression data sets demonstrate that the MI-ELM is useful and efficient as compared to the state-of-the-art algorithms.


Author(s):  
Yunsheng Shi ◽  
Zhengjie Huang ◽  
Shikun Feng ◽  
Hui Zhong ◽  
Wenjing Wang ◽  
...  

Graph neural network (GNN) and label propagation algorithm (LPA) are both message passing algorithms, which have achieved superior performance in semi-supervised classification. GNN performs feature propagation by a neural network to make predictions, while LPA uses label propagation across graph adjacency matrix to get results. However, there is still no effective way to directly combine these two kinds of algorithms. To address this issue, we propose a novel Unified Message Passaging Model (UniMP) that can incorporate feature and label propagation at both training and inference time. First, UniMP adopts a Graph Transformer network, taking feature embedding and label embedding as input information for propagation. Second, to train the network without overfitting in self-loop input label information, UniMP introduces a masked label prediction strategy, in which some percentage of input label information are masked at random, and then predicted. UniMP conceptually unifies feature propagation and label propagation and is empirically powerful. It obtains new state-of-the-art semi-supervised classification results in Open Graph Benchmark (OGB).


2020 ◽  
Author(s):  
Luoyang Xue ◽  
Ang Xu ◽  
Qirong Mao ◽  
Lijian Gao ◽  
Jie Chen

Abstract Local information has significant contributions to visual sentiment analysis (VSA). Recent studies about local region discovery need manually annotate region location. Affective local information learning and automatic discovery of sentiment-specific region are still the challenges in VSA. In this paper, we propose an end-to-end VSA method for weakly supervised sentiment-specific region discovery. Our method contains two branches: an automatic sentiment-specific region discovery branch and a sentiment analysis branch. In the sentiment-specific region discovery branch, a region proposal network with multiple convolution kernels is proposed to generate candidate affective regions. Then, we design the multiple instance learning (MIL) loss to remove redundant and noisy candidate regions. Finally, the sentiment analysis branch integrates both holistic and localized information obtained in the first branch by feature map coupling for final sentiment classification. Our method automatically discovers sentiment-specific regions by the constraint of MIL loss function without object-level labels. Quantitative and qualitative evaluations on four benchmark affective datasets demonstrate that our proposed method outperforms the state-of-the-art methods.


Author(s):  
Yuqing Ma ◽  
Shihao Bai ◽  
Shan An ◽  
Wei Liu ◽  
Aishan Liu ◽  
...  

Few-shot learning, aiming to learn novel concepts from few labeled examples, is an interesting and very challenging problem with many practical advantages. To accomplish this task, one should concentrate on revealing the accurate relations of the support-query pairs. We propose a transductive relation-propagation graph neural network (TRPN) to explicitly model and propagate such relations across support-query pairs. Our TRPN treats the relation of each support-query pair as a graph node, named relational node, and resorts to the known relations between support samples, including both intra-class commonality and inter-class uniqueness, to guide the relation propagation in the graph, generating the discriminative relation embeddings for support-query pairs. A pseudo relational node is further introduced to propagate the query characteristics, and a fast, yet effective transductive learning strategy is devised to fully exploit the relation information among different queries. To the best of our knowledge, this is the first work that explicitly takes the relations of support-query pairs into consideration in few-shot learning, which might offer a new way to solve the few-shot learning problem. Extensive experiments conducted on several benchmark datasets demonstrate that our method can significantly outperform a variety of state-of-the-art few-shot learning methods.


Author(s):  
Oktie Hassanzadeh ◽  
Debarun Bhattacharjya ◽  
Mark Feblowitz ◽  
Kavitha Srinivas ◽  
Michael Perrone ◽  
...  

In this paper, we study the problem of answering questions of type "Could X cause Y?" where X and Y are general phrases without any constraints. Answering such questions will assist with various decision analysis tasks such as verifying and extending presumed causal associations used for decision making. Our goal is to analyze the ability of an AI agent built using state-of-the-art unsupervised methods in answering causal questions derived from collections of cause-effect pairs from human experts. We focus only on unsupervised and weakly supervised methods due to the difficulty of creating a large enough training set with a reasonable quality and coverage. The methods we examine rely on a large corpus of text derived from news articles, and include methods ranging from large-scale application of classic NLP techniques and statistical analysis to the use of neural network based phrase embeddings and state-of-the-art neural language models.


2017 ◽  
Vol 58 ◽  
pp. 591-626 ◽  
Author(s):  
Nikolaos Pappas ◽  
Andrei Popescu-Belis

Representing documents is a crucial component in many NLP tasks, for instance predicting aspect ratings in reviews. Previous methods for this task treat documents globally, and do not acknowledge that target categories are often assigned by their authors with generally no indication of the specific sentences that motivate them. To address this issue, we adopt a weakly supervised learning model, which jointly learns to focus on relevant parts of a document according to the context along with a classifier for the target categories. Derived from the weighted multiple-instance regression (MIR) framework, the model learns decomposable document vectors for each individual category and thus overcomes the representational bottleneck in previous methods due to a fixed-length document vector. During prediction, the estimated relevance or saliency weights explicitly capture the contribution of each sentence to the predicted rating, thus offering an explanation of the rating. Our model achieves state-of-the-art performance on multi-aspect sentiment analysis, improving over several baselines. Moreover, the predicted saliency weights are close to human estimates obtained by crowdsourcing, and increase the performance of lexical and topical features for review segmentation and summarization.


2020 ◽  
Author(s):  
Flavie Lavoie-Cardinal ◽  
Anthony Bilodeau ◽  
Constantin Delmas ◽  
Martin Parent ◽  
Paul De Koninck ◽  
...  

Abstract High throughput quantitative analysis of microscopy images presents a challenge due to the complexity of the image content and the difficulty to retrieve precisely annotated datasets. In this paper we introduce a weakly-supervised MICRoscopy Analysis neural network (MICRA-Net) that can be trained on a simple main classification task using image-level annotations to solve multiple more complex auxiliary tasks, such as segmentation, detection, and enumeration. MICRA-Net relies on the latent information embedded within a trained model to achieve performances similar to state-of-the-art fully-supervised learning. This learnt information is extracted from the network using gradient class activation maps, which are combined to generate precise feature maps of the biological structures of interest. We demonstrate how MICRA-Net significantly alleviates the expert annotation process on various microscopy datasets and can be used for high-throughput quantitative analysis of microscopy images.


2020 ◽  
Vol 34 (03) ◽  
pp. 2594-2601
Author(s):  
Arjun Akula ◽  
Shuai Wang ◽  
Song-Chun Zhu

We present CoCoX (short for Conceptual and Counterfactual Explanations), a model for explaining decisions made by a deep convolutional neural network (CNN). In Cognitive Psychology, the factors (or semantic-level features) that humans zoom in on when they imagine an alternative to a model prediction are often referred to as fault-lines. Motivated by this, our CoCoX model explains decisions made by a CNN using fault-lines. Specifically, given an input image I for which a CNN classification model M predicts class cpred, our fault-line based explanation identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class calt. We argue that, due to the conceptual and counterfactual nature of fault-lines, our CoCoX explanations are practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, showing that CoCoX significantly outperforms the state-of-the-art explainable AI models. Our implementation is available at https://github.com/arjunakula/CoCoX


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document