scholarly journals Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 510 ◽  
Author(s):  
Taekyun Kim ◽  
Lee-Chae Jang ◽  
Dae San Kim ◽  
Han Young Kim

In recent years, many mathematicians studied various degenerate versions of some special polynomials for which quite a few interesting results were discovered. In this paper, we introduce the type 2 degenerate Bernoulli polynomials of the second kind and their higher-order analogues, and study some identities and expressions for these polynomials. Specifically, we obtain a relation between the type 2 degenerate Bernoulli polynomials of the second and the degenerate Bernoulli polynomials of the second, an identity involving higher-order analogues of those polynomials and the degenerate Stirling numbers of the second kind, and an expression of higher-order analogues of those polynomials in terms of the higher-order type 2 degenerate Bernoulli polynomials and the degenerate Stirling numbers of the first kind.

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 697
Author(s):  
Minyoung Ma ◽  
Dongkyu Lim

In the paper, by virtue of the p-adic invariant integral on Z p , the authors consider a type 2 w-Daehee polynomials and present some properties and identities of these polynomials related with well-known special polynomials. In addition, we present some symmetric identities involving the higher order type 2 w-Daehee polynomials. These identities extend and generalize some known results.


2021 ◽  
Vol 19 (1) ◽  
pp. 878-887
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jin-Woo Park

Abstract Type 2 poly-Bernoulli polynomials were introduced recently with the help of modified polyexponential functions. In this paper, we investigate several properties and identities associated with those polynomials arising from umbral calculus techniques. In particular, we express the type 2 poly-Bernoulli polynomials in terms of several special polynomials, like higher-order Cauchy polynomials, higher-order Euler polynomials, and higher-order Frobenius-Euler polynomials.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hye Kyung Kim ◽  
Taekyun Kim

AbstractIn this paper, we introduce poly-central factorial sequences and poly-central Bell polynomials arising from the polyexponential functions, reducing them to central factorials and central Bell polynomials of the second kind respectively when $k = 1$ k = 1 . We also show some relations: between poly-central factorial sequences and power of x; between poly-central Bell polynomials and power of x; between poly-central Bell polynomials and the poly-Bell polynomials; between poly-central Bell polynomials and higher order type 2 Bernoulli polynomials of second kind; recurrence formula of poly-central Bell polynomials.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we derive multifarious relationships among the two types of higher order q-Daehee polynomials and p-adic gamma function via Mahler theorem. Also, we compute some weighted p-adic q-integrals of the derivative of p-adic gamma function related to the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k.


Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz ◽  
Serkan Araci

Motivated by the definition of the type 2 poly-Bernoulli polynomials introduced by Kim-Kim, in the present paper, we consider a class of new generating function for the Frobenius-Genocchi polynomials, called the type 2 poly-Frobenius-Genocchi polynomials, by means of the polyexponential function. Then, we derive some useful relations and properties. We show that the type 2 poly-Frobenius-Genocchi polynomias equal a linear combination of the classical Frobenius-Genocchi polynomials and Stirling numbers of the first kind. In a special case, we give a relation between the type 2 poly-Frobenius-Genocchi polynomials and Bernoulli polynomials of order k. Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced by Kim-Kim, we introduce the unipoly-Frobenius-Genocchi polynomials by means of unipoly function and give multifarious properties including derivative and integral properties. Furthermore, we provide a correlation between the unipoly-Frobenius-Genocchi polynomials and the classical Frobenius-Genocchi polynomials.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 905 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim

Harmonic numbers appear, for example, in many expressions involving Riemann zeta functions. Here, among other things, we introduce and study discrete versions of those numbers, namely the discrete harmonic numbers. The aim of this paper is twofold. The first is to find several relations between the Type 2 higher-order degenerate Euler polynomials and the Type 2 high-order Changhee polynomials in connection with the degenerate Stirling numbers of both kinds and Jindalrae–Stirling numbers of both kinds. The second is to define the discrete harmonic numbers and some related polynomials and numbers, and to derive their explicit expressions and an identity.


2021 ◽  
Vol 128 (3) ◽  
pp. 1121-1132
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Si-Hyeon Lee ◽  
Jongkyum Kwon

Author(s):  
Waseem Khan

Motivation by the definition of the type 2 poly-Bernoulli polynomials introduced by Kim-Kim [9], in the present paper, we consider a new class of new generating function for the Fubini polynomials, called the type 2 poly-Fubini polynomials by means of the polyexponential function. Then, we derive some useful relations and properties. We show that the type 2 poly-Fubini polynomials equal a linear combination of the classical of the Fubini polynomials and Stirling numbers of the first kind. In a special case, we give a relation between the type 2 poly-Fubini polynomials and Bernoulli polynomials of order r. Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced by Kim-Kim [9]. We introduce the type 2 unipoly-Fubini polynomials by means of unipoly function and give multifarious properties including derivative and integral properties. Furthermore, we provide a correlation between the unipoly-Fubini polynomials and the classical Fubini polynomials.


Sign in / Sign up

Export Citation Format

Share Document