scholarly journals Energy Efficiency and User Capacity Optimization of Cognitive MIMO Systems Via the SCMA-Based Nonorthogonal Time Slot Allocation

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1136
Author(s):  
Pengju Zhang ◽  
Wenping Ge ◽  
Yongxing Zhang ◽  
Mengyao Gao ◽  
Gecheng Zhang

This paper investigates the energy-efficient communications and user capacity in the cognitive multiple input multiple output (MIMO) symmetric system of underlay mode. The advantage of the improved energy efficiency provided by the orthogonal slot allocation for time division multiple access (TDMA) has a side effect of restricting the number of users accessing the system. To tackle the above problem, this paper proposes a nonorthogonal time resource allocation method with sparse code multiple access (SCMA), which allows one to convert the orthogonal slot units of TDMA into non-orthogonal shared slot units for multiple secondary users (SUs). The method of adding virtual users is adopted, wherein each SU is treated as multiple SUs who occupy a shared unit, to facilitate the packet access. Finally, the greedy algorithm is applied to optimize the time slot allocation of unoccupied shared slot units. The simulation results show that SCMA-based nonorthogonal slot allocation can reduce not only the energy consumption by nearly 40%, but also the average power interference from SUs to primary users by nearly 2 dB if their number is relatively high. Moreover, in the case of satisfying the rate requirement of the users, the system user capacity increased by more than 50%.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Soobum Cho ◽  
Sang Kyu Park

Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system.


2014 ◽  
Vol E97.B (7) ◽  
pp. 1303-1312 ◽  
Author(s):  
Masahiro NAKAGAWA ◽  
Kyota HATTORI ◽  
Naoki KIMISHIMA ◽  
Masaru KATAYAMA ◽  
Akira MISAWA

Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


Author(s):  
Arvind Kakria ◽  
Trilok Chand Aseri

Background & Objective: Wireless communication has immensely grown during the past few decades due to significant demand for mobile access. Although cost-effective as compared to their wired counterpart, maintaining good quality-of-service (QoS) in these networks has always remained a challenge. Multiple-input Multiple-output (MIMO) systems, which consists of multiple transmitter and receiver antennas, have been widely acknowledged for their QoS and transmit diversity. Though suited for cellular base stations, MIMO systems are not suited for small-sized wireless nodes due to their hardware complexity, cost, and increased power requirements. Cooperative communication that allows relays, i.e. mobile or fixed nodes in a communication network, to share their resources and forward other node’s data to the destination node has substituted the MIMO systems nowadays. To harness the full benefit of cooperative communication, appropriate relay node selection is very important. This paper presents an efficient single-hop distributed relay supporting medium access control (MAC) protocol (EDSRS) that works in the single-hop environment and improves the energy efficiency and the life of relay nodes without compensating the throughput of the network. Methods: The protocol has been simulated using NS2 simulator. The proposed protocol is compared with energy efficient cooperative MAC protocol (EECOMAC) and legacy distributed coordination function (DCF) on the basis of throughput, energy efficiency, transmission delay and an end to end delay with various payload sizes. Result and Conclusion: The result of the comparison indicates that the proposed protocol (EDSRS) outperforms the other two protocols.


Sign in / Sign up

Export Citation Format

Share Document