scholarly journals A Definition of Two-Dimensional Schoenberg Type Operators

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1364
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

In this paper, a way to build two-dimensional Schoenberg type operators with arbitrary knots or with equidistant knots, respectively, is presented. The order of approximation reached by these operators was studied by obtaining a Voronovskaja type asymptotic theorem and using estimates in terms of second-order moduli of continuity.

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 533
Author(s):  
Sergio Amat ◽  
Alberto Magreñan ◽  
Juan Ruiz ◽  
Juan Carlos Trillo ◽  
Dionisio F. Yañez

Multiresolution representations of data are known to be powerful tools in data analysis and processing, and they are particularly interesting for data compression. In order to obtain a proper definition of the edges, a good option is to use nonlinear reconstructions. These nonlinear reconstruction are the heart of the prediction processes which appear in the definition of the nonlinear subdivision and multiresolution schemes. We define and study some nonlinear reconstructions based on the use of nonlinear means, more in concrete the so-called Generalized means. These means have two interesting properties that will allow us to get associated reconstruction operators adapted to the presence of discontinuities, and having the maximum possible order of approximation in smooth areas. Once we have these nonlinear reconstruction operators defined, we can build the related nonlinear subdivision and multiresolution schemes and prove more accurate inequalities regarding the contractivity of the scheme for the first differences and in turn the results about stability. In this paper, we also define a new nonlinear two-dimensional multiresolution scheme as non-separable, i.e., not based on tensor product. We then present the study of the stability issues for the scheme and numerical experiments reinforcing the proven theoretical results and showing the usefulness of the algorithm.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xu Zhang ◽  
Hoang Nguyen ◽  
Jeffrey T. Paci ◽  
Subramanian K. R. S. Sankaranarayanan ◽  
Jose L. Mendoza-Cortes ◽  
...  

AbstractThis investigation presents a generally applicable framework for parameterizing interatomic potentials to accurately capture large deformation pathways. It incorporates a multi-objective genetic algorithm, training and screening property sets, and correlation and principal component analyses. The framework enables iterative definition of properties in the training and screening sets, guided by correlation relationships between properties, aiming to achieve optimal parametrizations for properties of interest. Specifically, the performance of increasingly complex potentials, Buckingham, Stillinger-Weber, Tersoff, and modified reactive empirical bond-order potentials are compared. Using MoSe2 as a case study, we demonstrate good reproducibility of training/screening properties and superior transferability. For MoSe2, the best performance is achieved using the Tersoff potential, which is ascribed to its apparent higher flexibility embedded in its functional form. These results should facilitate the selection and parametrization of interatomic potentials for exploring mechanical and phononic properties of a large library of two-dimensional and bulk materials.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clifford V. Johnson ◽  
Felipe Rosso

Abstract Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.


Author(s):  
Jia-Ding Cao ◽  
Heinz H. Gonska

AbstractDeVore-Gopengauz-type operators have attracted some interest over the recent years. Here we investigate their relationship to shape preservation. We construct certain positive convolution-type operators Hn, s, j which leave the cones of j-convex functions invariant and give Timan-type inequalities for these. We also consider Boolean sum modifications of the operators Hn, s, j show that they basically have the same shape preservation behavior while interpolating at the endpoints of [−1, 1], and also satisfy Telyakovskiῐ- and DeVore-Gopengauz-type inequalities involving the first and second order moduli of continuity, respectively. Our results thus generalize related results by Lorentz and Zeller, Shvedov, Beatson, DeVore, Yu and Leviatan.


Sign in / Sign up

Export Citation Format

Share Document