scholarly journals A New Operational Matrices-Based Spectral Method for Multi-Order Fractional Problems

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1471 ◽  
Author(s):  
M. Hamid ◽  
Oi Mean Foong ◽  
Muhammad Usman ◽  
Ilyas Khan ◽  
Wei Wang

The operational matrices-based computational algorithms are the promising tools to tackle the problems of non-integer derivatives and gained a substantial devotion among the scientific community. Here, an accurate and efficient computational scheme based on another new type of polynomial with the help of collocation method (CM) is presented for different nonlinear multi-order fractional differentials (NMOFDEs) and Bagley–Torvik (BT) equations. The methods are proposed utilizing some new operational matrices of derivatives using Chelyshkov polynomials (CPs) through Caputo’s sense. Two different ways are adopted to construct the approximated (AOM) and exact (EOM) operational matrices of derivatives for integer and non-integer orders and used to propose an algorithm. The understudy problems have been transformed to an equivalent nonlinear algebraic equations system and solved by means of collocation method. The proposed computational method is authenticated through convergence and error-bound analysis. The exactness and effectiveness of said method are shown on some fractional order physical problems. The attained outcomes are endorsing that the recommended method is really accurate, reliable and efficient and could be used as suitable tool to attain the solutions for a variety of the non-integer order differential equations arising in applied sciences.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mohammad Maleki ◽  
M. Tavassoli Kajani ◽  
I. Hashim ◽  
A. Kilicman ◽  
K. A. M. Atan

We propose a numerical method for solving nonlinear initial-value problems of Lane-Emden type. The method is based upon nonclassical Gauss-Radau collocation points, and weighted interpolation. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced on arbitrary intervals. Then they are utilized to reduce the computation of nonlinear initial-value problems to a system of nonlinear algebraic equations. We also present the comparison of this work with some well-known results and show that the present solution is very accurate.


2021 ◽  
Vol 29 (2) ◽  
pp. 211-230
Author(s):  
Manpal Singh ◽  
S. Das ◽  
Rajeev ◽  
E-M. Craciun

Abstract In this article, two-dimensional nonlinear and multi-term time fractional diffusion equations are solved numerically by collocation method, which is used with the help of Lucas operational matrix. In the proposed method solutions of the problems are expressed in terms of Lucas polynomial as basis function. To determine the unknowns, the residual, initial and boundary conditions are collocated at the chosen points, which produce a system of nonlinear algebraic equations those have been solved numerically. The concerned method provides the highly accurate numerical solution. The accuracy of the approximate solution of the problem can be increased by expanding the terms of the polynomial. The accuracy and efficiency of the concerned method have been authenticated through the error analyses with some existing problems whose solutions are already known.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. Jafari ◽  
S. Nemati ◽  
R. M. Ganji

AbstractIn this research, we study a general class of variable order integro-differential equations (VO-IDEs). We propose a numerical scheme based on the shifted fifth-kind Chebyshev polynomials (SFKCPs). First, in this scheme, we expand the unknown function and its derivatives in terms of the SFKCPs. To carry out the proposed scheme, we calculate the operational matrices depending on the SFKCPs to find an approximate solution of the original problem. These matrices, together with the collocation points, are used to transform the original problem to form a system of linear or nonlinear algebraic equations. We discuss the convergence of the method and then give an estimation of the error. We end by solving numerical tests, which show the high accuracy of our results.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-78
Author(s):  
Anam Alwan Salih ◽  
Suha SHIHAB

The purpose of this paper is to introduce interesting modified Chebyshev orthogonal polynomial. Then, their new operational matrices of derivative and integration or modified Chebyshev polynomials of the first kind are introduced with explicit formulas. A direct computational method for solving a special class of optimal control problem, named, the quadratic optimal control problem is proposed using the obtained operational matrices. More precisely, this method is based on a state parameterization scheme, which gives an accurate approximation of the exact solution by utilizing a small number of unknown coefficients with the aid of modified Chebyshev polynomials. In addition, the constraint is reduced to some algebraic equations and the original optimal control problem reduces to optimization technique, which can be solved easily, and the approximate value of the performance index is calculated. Moreover, special attention is presented to discuss the convergence analysis and an upper bound of the error for the presented approximate solution is derived. Finally, some important illustrative examples of obtained results are shown and proved that powerful method in a simple way to get an optimal control of the considered.


Author(s):  
S.C. Shiralashetti ◽  
R.A. Mundewadi

In this paper, we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Haar wavelet collocation method. Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations, solving these equations using MATLAB to compute the Haar coefficients. The numerical results are compared with exact and existing method through error analysis, which shows the efficiency of the technique.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
W. M. Abd-Elhameed

The main aim of this research article is to develop two new algorithms for handling linear and nonlinear third-order boundary value problems. For this purpose, a novel operational matrix of derivatives of certain nonsymmetric generalized Jacobi polynomials is established. The suggested algorithms are built on utilizing the Galerkin and collocation spectral methods. Moreover, the principle idea behind these algorithms is based on converting the boundary value problems governed by their boundary conditions into systems of linear or nonlinear algebraic equations which can be efficiently solved by suitable solvers. We support our algorithms by a careful investigation of the convergence analysis of the suggested nonsymmetric generalized Jacobi expansion. Some illustrative examples are given for the sake of indicating the high accuracy and efficiency of the two proposed algorithms.


2020 ◽  
Vol 26 (2) ◽  
pp. 315-323
Author(s):  
M. Mojahedfar ◽  
Abolfazl Tari ◽  
S. Shahmorad

AbstractIn this paper, a class of time fractional partial integro-differential equations (FPIDEs) with initial conditions is studied. Some operational matrices are used to reduce a FPIDE problem to a system of algebraic equations with special properties. The resulted system is solved to give an approximate solution to the problem. Error estimation is also discussed for the approximate solution. Finally, some numerical examples are given to show the accuracy of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abdulnasir Isah ◽  
Chang Phang ◽  
Piau Phang

An effective collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations with initial and boundary conditions is presented. Using the properties of Genocchi polynomials, we derive a new Genocchi delay operational matrix which we used together with the Genocchi operational matrix of fractional derivative to approach the problems. The error upper bound for the Genocchi operational matrix of fractional derivative is also shown. Collocation method based on these operational matrices is applied to reduce the generalized fractional pantograph equations to a system of algebraic equations. The comparison of the numerical results with some existing methods shows that the present method is an excellent mathematical tool for finding the numerical solutions of generalized fractional pantograph equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
W. M. Abd-Elhameed ◽  
E. H. Doha ◽  
Y. H. Youssri

This paper is concerned with introducing two wavelets collocation algorithms for solving linear and nonlinear multipoint boundary value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently solved. Convergence analysis and some specific numerical examples are discussed to demonstrate the validity and applicability of the proposed algorithms. The obtained numerical results are comparing favorably with the analytical known solutions.


Sign in / Sign up

Export Citation Format

Share Document