scholarly journals Two Classes of Iteration Functions and Q-Convergence of Two Iterative Methods for Polynomial Zeros

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 371
Author(s):  
Petko D. Proinov

In this work, two broad classes of iteration functions in n-dimensional vector spaces are introduced. They are called iteration functions of the first and second kind at a fixed point of the corresponding iteration function. Two general local convergence theorems are presented for Picard-type iterative methods with high Q-order of convergence. In particular, it is shown that if an iterative method is generated by an iteration function of first or second kind, then it is Q-convergent under each initial approximation that is sufficiently close to the fixed point. As an application, a detailed local convergence analysis of two fourth-order iterative methods is provided for finding all zeros of a polynomial simultaneously. The new results improve the previous ones for these methods in several directions.

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Stoil I. Ivanov

In this paper, we establish two local convergence theorems that provide initial conditions and error estimates to guarantee the Q-convergence of an extended version of Chebyshev–Halley family of iterative methods for multiple polynomial zeros due to Osada (J. Comput. Appl. Math. 2008, 216, 585–599). Our results unify and complement earlier local convergence results about Halley, Chebyshev and Super–Halley methods for multiple polynomial zeros. To the best of our knowledge, the results about the Osada’s method for multiple polynomial zeros are the first of their kind in the literature. Moreover, our unified approach allows us to compare the convergence domains and error estimates of the mentioned famous methods and several new randomly generated methods.


Author(s):  
Ioannis K Argyros ◽  
Santhosh George

The aim of this article is to extend the local as well as the semi-local convergence analysis of multi-point iterative methods using center Lipschitz conditions in combination with our idea, of the restricted convergence region. It turns out that this way a finer convergence analysis for these methods is obtained than in earlier works and without additional hypotheses. Numerical examples favoring our technique over earlier ones completes this article.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 233 ◽  
Author(s):  
Ioannis Argyros ◽  
Santhosh George

The aim of this article is to present a unified semi-local convergence analysis for a k-step iterative method containing the inverse of a flexible and frozen linear operator for Banach space valued operators. Special choices of the linear operator reduce the method to the Newton-type, Newton’s, or Stirling’s, or Steffensen’s, or other methods. The analysis is based on center, as well as Lipschitz conditions and our idea of the restricted convergence region. This idea defines an at least as small region containing the iterates as before and consequently also a tighter convergence analysis.


2020 ◽  
pp. 102-109
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

The local convergence analysis of iterative methods is important since it demonstrates the degree of diffculty for choosing initial points. In the present study, we introduce generalized multi-step high order methods for solving nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative which actually appears in the methods in contrast to earlier works using hypotheses on higher order derivatives. This way we extend the applicability of these methods. The analysis includes computable radius of convergence as well as error bounds based on Lipschitz-type conditions not given in earlier studies. Numerical examples conclude this study.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650034
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for some families of fourth and sixth-order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies [V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing 45 (1990) 355–367; C. Chun, P. Stanica and B. Neta, Third order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011) 1665–1675; J. M. Gutiérrez and M. A. Hernández, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998) 1–8; M. A. Hernández and M. A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math. 126 (2000) 131–143; M. A. Hernández, Chebyshev’s approximation algorithms and applications, Comput. Math. Appl. 41 (2001) 433–455; M. A. Hernández, Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory Appl. 104(3) (2000) 501–515; J. L. Hueso, E. Martinez and C. Teruel, Convergence, efficiency and dynamics of new fourth and sixth-order families of iterative methods for nonlinear systems, J. Comput. Appl. Math. 275 (2015) 412–420; Á. A. Magre nán, Estudio de la dinámica del método de Newton amortiguado, Ph.D. thesis, Servicio de Publicaciones, Universidad de La Rioja (2013), http://dialnet.unirioja.es/servlet/tesis?codigo=38821 ; J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970); M. S. Petkovic, B. Neta, L. Petkovic and J. Džunič, Multi-Point Methods for Solving Nonlinear Equations (Elsevier, 2013); J. F. Traub, Iterative Methods for the Solution of Equations, Automatic Computation (Prentice-Hall, Englewood Cliffs, NJ, 1964); X. Wang and J. Kou, Semilocal convergence and [Formula: see text]-order for modified Chebyshev–Halley methods, Numer. Algorithms 64(1) (2013) 105–126] have used hypotheses on the fourth Fréchet derivative of the operator involved. We use hypotheses only on the first Fréchet derivative in our local convergence analysis. This way, the applicability of these methods is extended. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples illustrating the theoretical results are also presented in this study.


Author(s):  
George A. Anastassiou ◽  
Ioannis K. Argyros

AbstractThe goal of this paper is to present a semi-local convergence analysis for some iterative methods under generalized conditions. The operator is only assumed to be continuous and its domain is open. Applications are suggested including Banach space valued functions of fractional calculus, where all integrals are of Bochner-type.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1640
Author(s):  
Petko D. Proinov ◽  
Milena D. Petkova

In this paper, we construct and study a new family of multi-point Ehrlich-type iterative methods for approximating all the zeros of a uni-variate polynomial simultaneously. The first member of this family is the two-point Ehrlich-type iterative method introduced and studied by Trićković and Petković in 1999. The main purpose of the paper is to provide local and semilocal convergence analysis of the multi-point Ehrlich-type methods. Our local convergence theorem is obtained by an approach that was introduced by the authors in 2020. Two numerical examples are presented to show the applicability of our semilocal convergence theorem.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


Sign in / Sign up

Export Citation Format

Share Document