scholarly journals LAPREL: A Label-Aware Parallel Network for Relation Extraction

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 961
Author(s):  
Xiang Li ◽  
Junan Yang ◽  
Pengjiang Hu ◽  
Hui Liu

Relation extraction is a crucial task in natural language processing (NLP) that aims to extract all relational triples from a given sentence. Extracting overlapping relational triples from complex texts is challenging and has received extensive research attention. Most existing methods are based on cascade models and employ language models to transform the given sentence into vectorized representations. The cascaded structure can cause exposure bias issue; however, the vectorized representation of each sentence needs to be closely related to the relation extraction with pre-defined relation types. In this paper, we propose a label-aware parallel network (LAPREL) for relation extraction. To solve the exposure bias issue, we apply a parallel network, instead of the cascade framework, based on the table-filling method with a symmetric relation pair tagger. To obtain task-related sentence embedding, we embed the prior label information into the token embedding and adjust the sentence embedding for each relation type. The proposed method can also effectively deal with overlapping relational triples. Compared with 10 baselines, extensive experiments are conducted on two public datasets to verify the performance of our proposed network. The experimental results show that LAPREL outperforms the 10 baselines in extracting relational triples from complex text.

Author(s):  
Ming Hao ◽  
Weijing Wang ◽  
Fang Zhou

Short text classification is an important foundation for natural language processing (NLP) tasks. Though, the text classification based on deep language models (DLMs) has made a significant headway, in practical applications however, some texts are ambiguous and hard to classify in multi-class classification especially, for short texts whose context length is limited. The mainstream method improves the distinction of ambiguous text by adding context information. However, these methods rely only the text representation, and ignore that the categories overlap and are not completely independent of each other. In this paper, we establish a new general method to solve the problem of ambiguous text classification by introducing label embedding to represent each category, which makes measurable difference between the categories. Further, a new compositional loss function is proposed to train the model, which makes the text representation closer to the ground-truth label and farther away from others. Finally, a constraint is obtained by calculating the similarity between the text representation and label embedding. Errors caused by ambiguous text can be corrected by adding constraints to the output layer of the model. We apply the method to three classical models and conduct experiments on six public datasets. Experiments show that our method can effectively improve the classification accuracy of the ambiguous texts. In addition, combining our method with BERT, we obtain the state-of-the-art results on the CNT dataset.


2021 ◽  
Author(s):  
Zeyuan Zeng ◽  
Yijia Zhang ◽  
Liang Yang ◽  
Hongfei Lin

BACKGROUND Happiness becomes a rising topic that we all care about recently. It can be described in various forms. For the text content, it is an interesting subject that we can do research on happiness by utilizing natural language processing (NLP) methods. OBJECTIVE As an abstract and complicated emotion, there is no common criterion to measure and describe happiness. Therefore, researchers are creating different models to study and measure happiness. METHODS In this paper, we present a deep-learning based model called Senti-BAS (BERT embedded Bi-LSTM with self-Attention mechanism along with the Sentiment computing). RESULTS Given a sentence that describes how a person felt happiness recently, the model can classify the happiness scenario in the sentence with two topics: was it controlled by the author (label ‘agency’), and was it involving other people (label ‘social’). Besides language models, we employ the label information through sentiment computing based on lexicon. CONCLUSIONS The model performs with a high accuracy on both ‘agency’ and ‘social’ labels, and we also make comparisons with several popular embedding models like Elmo, GPT. Depending on our work, we can study the happiness at a more fine-grained level.


Author(s):  
Jie Liu ◽  
Shaowei Chen ◽  
Bingquan Wang ◽  
Jiaxin Zhang ◽  
Na Li ◽  
...  

Joint entity and relation extraction is critical for many natural language processing (NLP) tasks, which has attracted increasing research interest. However, it is still faced with the challenges of identifying the overlapping relation triplets along with the entire entity boundary and detecting the multi-type relations. In this paper, we propose an attention-based joint model, which mainly contains an entity extraction module and a relation detection module, to address the challenges. The key of our model is devising a supervised multi-head self-attention mechanism as the relation detection module to learn the token-level correlation for each relation type separately. With the attention mechanism, our model can effectively identify overlapping relations and flexibly predict the relation type with its corresponding intensity. To verify the effectiveness of our model, we conduct comprehensive experiments on two benchmark datasets. The experimental results demonstrate that our model achieves state-of-the-art performances.


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Cong Sun ◽  
Zhihao Yang ◽  
Lei Wang ◽  
Yin Zhang ◽  
Hongfei Lin ◽  
...  

Abstract Background The recognition of pharmacological substances, compounds and proteins is essential for biomedical relation extraction, knowledge graph construction, drug discovery, as well as medical question answering. Although considerable efforts have been made to recognize biomedical entities in English texts, to date, only few limited attempts were made to recognize them from biomedical texts in other languages. PharmaCoNER is a named entity recognition challenge to recognize pharmacological entities from Spanish texts. Because there are currently abundant resources in the field of natural language processing, how to leverage these resources to the PharmaCoNER challenge is a meaningful study. Methods Inspired by the success of deep learning with language models, we compare and explore various representative BERT models to promote the development of the PharmaCoNER task. Results The experimental results show that deep learning with language models can effectively improve model performance on the PharmaCoNER dataset. Our method achieves state-of-the-art performance on the PharmaCoNER dataset, with a max F1-score of 92.01%. Conclusion For the BERT models on the PharmaCoNER dataset, biomedical domain knowledge has a greater impact on model performance than the native language (i.e., Spanish). The BERT models can obtain competitive performance by using WordPiece to alleviate the out of vocabulary limitation. The performance on the BERT model can be further improved by constructing a specific vocabulary based on domain knowledge. Moreover, the character case also has a certain impact on model performance.


2021 ◽  
Vol 21 (S7) ◽  
Author(s):  
Tao Li ◽  
Ying Xiong ◽  
Xiaolong Wang ◽  
Qingcai Chen ◽  
Buzhou Tang

Abstract Objective Relation extraction (RE) is a fundamental task of natural language processing, which always draws plenty of attention from researchers, especially RE at the document-level. We aim to explore an effective novel method for document-level medical relation extraction. Methods We propose a novel edge-oriented graph neural network based on document structure and external knowledge for document-level medical RE, called SKEoG. This network has the ability to take full advantage of document structure and external knowledge. Results We evaluate SKEoG on two public datasets, that is, Chemical-Disease Relation (CDR) dataset and Chemical Reactions dataset (CHR) dataset, by comparing it with other state-of-the-art methods. SKEoG achieves the highest F1-score of 70.7 on the CDR dataset and F1-score of 91.4 on the CHR dataset. Conclusion The proposed SKEoG method achieves new state-of-the-art performance. Both document structure and external knowledge can bring performance improvement in the EoG framework. Selecting proper methods for knowledge node representation is also very important.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhenyu Yang ◽  
Lei Wang ◽  
Bo Ma ◽  
Yating Yang ◽  
Rui Dong ◽  
...  

Extracting entities and relations from unstructured sentences is one of the most concerned tasks in the field of natural language processing. However, most existing works process entity and relation information in a certain order and suffer from the error iteration. In this paper, we introduce a relational triplet joint tagging network (RTJTN), which is divided into joint entities and relations tagging layer and relational triplet judgment layer. In the joint tagging layer, instead of extracting entity and relation separately, we propose a tagging method that allows the model to simultaneously extract entities and relations in unstructured sentences to prevent the error iteration; and, in order to solve the relation overlapping problem, we propose a relational triplet judgment network to judge the correct triples among the group of triples with the same relation in a sentence. In the experiment, we evaluate our network on the English public dataset NYT and the Chinese public datasets DuIE 2.0 and CMED. The F1 score of our model is improved by 1.1, 6.0, and 5.1 compared to the best baseline model on NYT, DuIE 2.0, and CMED datasets, respectively. In-depth analysis of the model’s performance on overlapping problems and sentence complexity problems shows that our model has different gains in all cases.


Author(s):  
Yue Yuan ◽  
Xiaofei Zhou ◽  
Shirui Pan ◽  
Qiannan Zhu ◽  
Zeliang Song ◽  
...  

Joint extraction of entities and relations is an important task in natural language processing (NLP), which aims to capture all relational triplets from plain texts. This is a big challenge due to some of the triplets extracted from one sentence may have overlapping entities. Most existing methods perform entity recognition followed by relation detection between every possible entity pairs, which usually suffers from numerous redundant operations. In this paper, we propose a relation-specific attention network (RSAN) to handle the issue. Our RSAN utilizes relation-aware attention mechanism to construct specific sentence representations for each relation, and then performs sequence labeling to extract its corresponding head and tail entities. Experiments on two public datasets show that our model can effectively extract overlapping triplets and achieve state-of-the-art performance.


2019 ◽  
Vol 9 (18) ◽  
pp. 3795 ◽  
Author(s):  
Haihong E ◽  
Siqi Xiao ◽  
Meina Song

Entity-relation extraction is a basic task in natural language processing, and recently, the use of deep-learning methods, especially the Long Short-Term Memory (LSTM) network, has achieved remarkable performance. However, most of the existing entity-relation extraction methods cannot solve the overlapped multi-relation extraction problem, which means one or two entities are shared among multiple relational triples contained in a sentence. In this paper, we propose a text-generated method to solve the overlapped problem of entity-relation extraction. Based on this, (1) the entities and their corresponding relations are jointly generated as target texts without any additional feature engineering; (2) the model directly generates the relational triples using a unified decoding process, and entities can be repeatedly presented in multiple triples to solve the overlapped-relation problem. We conduct experiments on two public datasets—NYT10 and NYT11. The experimental results show that our proposed method outperforms the existing work, and achieves the best results.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guiduo Duan ◽  
Jiayu Miao ◽  
Tianxi Huang ◽  
Wenlong Luo ◽  
Dekun Hu

Relation extraction is a popular subtask in natural language processing (NLP). In the task of entity relation joint extraction, overlapping entities and multi-type relation extraction in overlapping triplets remain a challenging problem. The classification of relations by sharing the same probability space will ignore the correlation information among multiple relations. A relational-adaptive entity relation joint extraction model based on multi-head self-attention and densely connected graph convolution network (which is called MA-DCGCN) is proposed in the paper. In the model, the multi-head attention mechanism is specifically used to assign weights to multiple relation types among entities so as to ensure that the probability space of multiple relation is not mutually exclusive. This mechanism also predicts the strength of the relationship between various relationship types and entity pairs flexibly. The structure information of deeper level in the text graph is extracted by the densely connected graph convolution network, and the interaction information of entity relation is captured. To demonstrate the superior performance of our model, we conducted a variety of experiments on two widely used public datasets, NYT and WebNLG. Extensive results show that our model achieves state-of-the-art performance. Especially, the detection effect of overlapping triplets is significantly improved compared with the several existing mainstream methods.


2021 ◽  
Vol 11 (1) ◽  
pp. 428
Author(s):  
Donghoon Oh ◽  
Jeong-Sik Park ◽  
Ji-Hwan Kim ◽  
Gil-Jin Jang

Speech recognition consists of converting input sound into a sequence of phonemes, then finding text for the input using language models. Therefore, phoneme classification performance is a critical factor for the successful implementation of a speech recognition system. However, correctly distinguishing phonemes with similar characteristics is still a challenging problem even for state-of-the-art classification methods, and the classification errors are hard to be recovered in the subsequent language processing steps. This paper proposes a hierarchical phoneme clustering method to exploit more suitable recognition models to different phonemes. The phonemes of the TIMIT database are carefully analyzed using a confusion matrix from a baseline speech recognition model. Using automatic phoneme clustering results, a set of phoneme classification models optimized for the generated phoneme groups is constructed and integrated into a hierarchical phoneme classification method. According to the results of a number of phoneme classification experiments, the proposed hierarchical phoneme group models improved performance over the baseline by 3%, 2.1%, 6.0%, and 2.2% for fricative, affricate, stop, and nasal sounds, respectively. The average accuracy was 69.5% and 71.7% for the baseline and proposed hierarchical models, showing a 2.2% overall improvement.


Sign in / Sign up

Export Citation Format

Share Document